VIMS

References

  1. Bilkovic, D.M., Mitchell, M., Mason, P. and Duhring, K., 2016. The role of living shorelines as estuarine habitat conservation strategies. Coastal Management, 44(3), pp.161-174, https://doi.org/10.1080/08920753.2016.1160201
  2. Bilkovic, D.M., Mitchell, M.M., La Peyre, M.K. and Toft, J.D. eds., 2017. Living shorelines: the science and management of nature-based coastal protection. CRC PressBoon, J. D. (2012), Evidence of Sea Level Acceleration at U.S. and Canadian Tide Stations, Atlantic Coast, North America, J Coastal Res, 28(6), 1437-1445, https://doi.org/10.2112/Jcoastres-D-12-00102.1.
  3. Boon, J. D., J. M. Brubaker, and D. R. Forrest (2010), Chesapeake Bay Land Subsidence and Sea Level Change: An Evaluation of Past and Present Trends and Future Outlook, edited, pp. 1-41, Virginia Institute of Marine Science, Gloucester Point, Virginia.
  4. Boon, J. D., and M. Mitchell (2015), Nonlinear Change in Sea Level Observed at North American Tide Stations, J Coastal Res, 31(6), 1295-1305, https://doi.org/10.2112/JCOASTRES-D-15-00041.1
  5. Boon, J. D., and M. Mitchell (2016), Reply to: Houston, JR, 2016. Discussion of: Boon, JD and Mitchell, M., 2015. Nonlinear Change in Sea Level Observed at North American Tide Stations, Journal of Coastal Research, 31(6), 1295-1305. Journal of Coastal Research, 32(4), 983-987., J Coastal Res, 32(4), 988-991, https://doi.org/10.2112/Jcoastres-D-16a-00001.1.
  6. Boon, J. D., M. Mitchell, D. K. Loftis, and D. L. Malmquist (2018), Anthropocene Sea Level Change: A History of Recent Trends Observed in the U.S. East, Gulf and West Coast Regions, in Special Report in Applied Marine Science and Ocean Engineering (SRAMSOE) No. 467, edited, Virginia Institute of Marine Science, Gloucester Point, VA, https://doi.org/10.21220/V5T17T.
  7. Bromirski, P. D., A. J. Miller, R. E. Flick, and G. Auad (2011), Dynamical suppression of sea level rise along the Pacific coast of North America: Indications for imminent acceleration, J Geophys Res-Oceans, 116, https://doi.org/10.1029/2010jc006759.
  8. Cazenave, A., and R. S. Nerem (2004), Present-day sea level change: Observations and causes, Rev Geophys, 42(3), https://doi.org/10.1029/2003rg000139.
  9. Center for Coastal Resources Management, Virginia Institute of Marine Science. 2017. Adapt Virginia: A New Web Portal about Climate Change Adaptations. Rivers & Coast, Summer 2017, Volume 12. Virginia Institute of Marine Science, College of William and Mary, http://publish.wm.edu/reports/700.
  10. Crutzen, P. J. (2002), Geology of mankind, Nature, 415(6867), 23-23, https://doi.org/10.1038/415023a.
  11. Crutzen, P. J., and E. F. Stoermer (2000), The “Anthropocene”, in IGBP Global Change Newsletter, edited.
  12. Davis, J. L., and N. T. Vinogradova (2017), Causes of accelerating sea level on the East Coast of North America, Geophys Res Lett, 44(10), 5133-5141, https://doi.org/10.1002/2017gl072845.
  13. Donoghue, J. F. (2011), Sea level history of the northern Gulf of Mexico coast and sea level rise scenarios for the near future, Climatic Change, 107(1-2), 17-33, https://doi.org/10.1007/s10584-011-0077-x.
  14. Douglas, B. C. (1997), Global sea rise: A redetermination, Surv Geophys, 18(2-3), 279-292, https://doi.org/10.1023/A:1006544227856.
  15. Douglas, B. C. (2001), Sea level change in the era of the recording tide gauge, in Sea Level Rise: History and Consequences, edited by B. C. Douglas, M. S. Kearney and S. P. Leatherman, pp. 37-64, Academic Press, San Diego, CA.
  16. Elliott, J. L., C. F. Larsen, J. T. Freymueller, and R. J. Motyka (2010), Tectonic block motion and glacial isostatic adjustment in southeast Alaska and adjacent Canada constrained by GPS measurements, J Geophys Res-Sol Ea, 115, https://doi.org/10.1029/2009jb007139.
  17. Ezer, T., L. P. Atkinson, W. B. Corlett, and J. L. Blanco (2013), Gulf Stream's induced sea level rise and variability along the U.S. mid-Atlantic coast, J Geophys Res-Oceans, 118(2), 685-697, https://doi.org/10.1002/jgrc.20091.
  18. Ezer, T., and W. B. Corlett (2012), Is sea level rise accelerating in the Chesapeake Bay? A demonstration of a novel new approach for analyzing sea level data, Geophys Res Lett, 39(19), https://doi.org/10.1029/2012GL053435.
  19. Ezer, T., I. D. Haigh, and P. L. Woodworth (2016), Nonlinear Sea-Level Trends and Long-Term Variability on Western European Coasts, J Coastal Res, 32(4), 744-755, https://doi.org/10.2112/Jcoastres-D-15-00165.1.
  20. Gabrysch, R. K., and L. S. Coplin (1990), Land-Surface Subsidence in Houston-Galveston Region, Texas, edited by T. W. D. Board, p. 19, Texas Water Development Board, Austin, TX.
  21. González, J. L., and T. E. Tornqvist (2006), Coastal Louisiana in crisis: Subsidence or sea level rise?, Eos, Transactions American Geophysical Union, 87(45), 493-498, https://doi.org/10.1029/2006EO450001.
  22. Hong, B. G., W. Sturges, and A. J. Clarke (2000), Sea level on the US East Coast: Decadal variability caused by open ocean wind-curl forcing, J Phys Oceanogr, 30(8), 2088-2098, https://doi.org/10.1175/1520-0485(2000)030<2088:Slotus>2.0.Co;2.
  23. Houston, J. R., and R. G. Dean (2011), Sea-Level Acceleration Based on US Tide Gauges and Extensions of Previous Global-Gauge Analyses, J Coastal Res, 27(3), 409-417, https://doi.org/10.2112/Jcoastres-D-10-00157.1.
  24. IPCC (2007), Summary for Policymakers, in Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, edited by S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K. B. Avery, M. Tignor and H. L. Miller, Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.
  25. IPCC (2014), Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, edited by T. F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P. M. Midgley, p. 1535, Cambridge University Press, United Kingdom and New York, NY, USA, https://doi.org/10.1017/CBO9781107415324.
  26. Jackson, L. C., R. Kahana, T. Graham, M. A. Ringer, T. Woollings, J. V. Mecking, and R. A. Wood (2015), Global and European climate impacts of a slowdown of the AMOC in a high resolution GCM, Clim Dynam, 45(11-12), 3299-3316, https://doi.org/10.1007/s00382-015-2540-2.
  27. Johnson, C. S., K. G. Miller, J. V. Browning, R. E. Kopp, N. S. Khan, Y. Fan, S. D. Stanford, and B. P. Horton (2018), The Role of Sediment Compaction and Groundwater Withdrawal in Local Sea-Level Rise, Sandy Hook, New Jersey, USA, Quaternary Sci Rev, 181, 30–42, https://doi.org/10.1016/j.quascirev.2017.11. 031.
  28. Karegar, M. A., T. H. Dixon, and S. E. Engelhart (2016), Subsidence along the Atlantic Coast of North America: Insights from GPS and late Holocene relative sea level data, Geophys Res Lett, 43(7), 3126-3133, https://doi.org/10.1002/2016gl068015.
  29. Karegar, M. A., T. H. Dixon, R. Malservisi, J. Kusche, and S. E. Engelhart (2017), Nuisance Flooding and Relative Sea-Level Rise: the Importance of Present-Day Land Motion, Scientific Reports, 7(1), 11197, https://doi.org/10.1038/s41598-017-11544-y.
  30. Kidwell, D. M., J. C. Dietrich, S. C. Hagen, and S. C. Medeiros (2017), An Earth's Future Special Collection: Impacts of the coastal dynamics of sea level rise on low-gradient coastal landscapes, Earths Future, 5(1), 2-9, https://doi.org/10.1002/2016ef000493.
  31. Kolker, A. S., M. A. Allison, and S. Hameed (2011), An evaluation of subsidence rates and sea-level variability in the northern Gulf of Mexico, Geophys Res Lett, 38, https://doi.org/10.1029/2011gl049458.
  32. Kopp, R. E. (2013), Does the mid-Atlantic United States sea level acceleration hot spot reflect ocean dynamic variability?, Geophys Res Lett, 40(15), 3981-3985, https://doi.org/10.1002/grl.50781.
  33. Kopp, R. E., C. C. Hay, C. M. Little, and J. X. Mitrovica (2015), Geographic Variability of Sea-Level Change, Current Climate Change Reports, 1(3), 192-204, https://doi.org/10.1007/s40641-015-0015-5.
  34. Kopp, R. E., R. M. Horton, C. M. Little, J. X. Mitrovica, M. Oppenheimer, D. J. Rasmussen, B. H. Strauss, and C. Tebaldi (2014), Probabilistic 21st and 22nd century sea-level projections at a global network of tide-gauge sites, Earths Future, 2(8), 383-406, https://doi.org/10.1002/2014ef000239.
  35. Larour, E., E. R. Ivins, and S. Adhikari (2017), Should coastal planners have concern over where land ice is melting?, Sci Adv, 3(11), https://doi.org/10.1126/sciadv.1700537.
  36. Loftis, J.D. 2014. Development of a Large-Scale Storm Surge and High-Resolution Sub-Grid Inundation Model for Coastal Flooding Applications: A Case Study during Hurricane Sandy. Ph.D. Dissertation. College of William & Mary.  229pp.
  37. Loftis, J.D., Wang, H.V., DeYoung, R.J., and Ball, W.B. 2016. Using Lidar Elevation Data to Develop a Topobathymetric Digital Elevation Model for Sub-Grid Inundation Modeling at Langley Research Center, In: Brock, J.C.; Gesch, D.B.; Parrish, C.E.; Rogers, J.N., and Wright, C.W. (eds.), Advances in Topobathymetric Mapping, Models, and Applications. Journal of Coastal Research, Special Issue 76, 134-148. https://doi.org/10.2112/SI76-012
  38. Loftis, J.D., Wang, H., Forrest, D., Rhee, S., Nguyen, C. (2017). Emerging Flood Model Validation Frameworks for Street-Level Inundation Modeling with StormSense.  SCOPE '17 Proceedings of the 2nd International Workshop on Science of Smart City Operations and Platforms Engineering, 2(1), 13-18.
  39. Loftis, J.D., Forrest, D.R., Katragadda, S., Spencer, K., Organski, T., Nguyen, C., and Rhee, S. 2018a. StormSense: A New Integrated Network of IoT Water Level Sensors in the Smart Cities of Hampton Roads, VA. Marine Technology Society Journal, 52(2): (In Press). https://wm1693.box.com/s/j501eg525rtqnya41n2dfm6a0o4yx7gh
  40. Mitchell, M., Hershner, C., Herman, J., Schatt, D., Eggington, E., and Stiles, S. 2013. Recurrent flooding study for Tidewater Virginia. Virginia senate document no. 3. Richmond, Virginia. Report.
  41. Mitrovica, J. X., N. Gomez, and P. U. Clark (2009), The Sea-Level Fingerprint of West Antarctic Collapse, Science, 323(5915), 753-753, https://doi.org/10.1126/science.1166510.
  42. Mitrovica, J. X., and G. A. Milne (2002), On the origin of late Holocene sea-level highstands within equatorial ocean basins, Quaternary Sci Rev, 21(20-22), 2179-2190, https://doi.org/10.1016/S0277-3791(02)00080-X.
  43. Mitrovica, J. X., M. E. Tamisiea, J. L. Davis, and G. A. Milne (2001), Recent mass balance of polar ice sheets inferred from patterns of global sea-level change, Nature, 409(6823), 1026-1029, https://doi.org/10.1038/35059054.
  44. Monastersky, R. (2015), The human age, Nature, 519(7542), 144-147, https://doi.org/10.1038/519144a.
  45. Morton, R. A., J. C. Bernier, and J. A. Barras (2006), Evidence of regional subsidence and associated interior wetland loss induced by hydrocarbon production, Gulf Coast region, USA, Environ Geol, 50(2), 261-274, https://doi.org/10.1007/s00254-006-0207-3.
  46. Nerem, R. S., B. D. Beckley, J. T. Fasullo, B. D. Hamlington, D. Masters, and G. T. Mitchum (2018), Climate-change–driven accelerated sea-level rise detected in the altimeter era, Proceedings of the National Academy of Sciences, 115(9), 2022, https://doi.org/10.1073/pnas.1717312115.
  47. Newman, M., G. P. Compo, and M. A. Alexander (2003), ENSO-forced variability of the Pacific decadal oscillation, J Climate, 16(23), 3853-3857, https://doi.org/10.1175/1520-0442(2003)016<3853:Evotpd>2.0.Co;2.
  48. Park, J., and W. Sweet (2015), Accelerated sea level rise and Florida Current transport, Ocean Sci, 11(4), 607-615, https://doi.org/10.5194/os-11-607-2015.
  49. Parker, B. B. (2007), Tidal Analysis and Prediction, edited by N. C.-O. 3, p. 379, NOAA Special Publication.
  50. Parris, A., et al. (2012), Global Sea Level Rise Scenarios for the US National Climate Assessment, edited by N. T. Memo, p. 37, OAR CPO-1.
  51. Penland, S., and K. E. Ramsey (1990), Relative Sea-Level Rise in Louisiana and the Gulf of Mexico - 1908-1988, J Coastal Res, 6(2), 323-342, http://www.jstor.org/stable/4297682.
  52. Piecuch, C. G., and R. M. Ponte (2011), Mechanisms of interannual steric sea level variability, Geophys Res Lett, 38(15), n/a-n/a, https://doi.org/10.1029/2011GL048440.
  53. Piecuch, C. G., and R. M. Ponte (2015), Inverted barometer contributions to recent sea level changes along the northeast coast of North America, Geophys Res Lett, 42(14), 5918-5925, https://doi.org/10.1002/2015gl064580.
  54. Poland, J. F. (1960), Land subsidence in the San Joaquin Valley and its effect on estimates of ground-water resources, International Association of Scientific Hydrology, 52, 324–335.
  55. Sallenger, A. H., K. S. Doran, and P. A. Howd (2012), Hotspot of accelerated sea-level rise on the Atlantic coast of North America, Nat Clim Change, 2(12), 884-888, https://doi.org/10.1038/Nclimate1597.
  56. Sato, T., S. Miura, W. K. Sun, T. Sugano, J. T. Freymueller, C. F. Larsen, Y. Ohta, H. Fujimoto, D. Inazu, and R. J. Motyka (2012), Gravity and uplift rates observed in southeast Alaska and their comparison with GIA model predictions, J Geophys Res-Sol Ea, 117, https://doi.org/10.1029/2011jb008485.
  57. Sella, G. F., S. Stein, T. H. Dixon, M. Craymer, T. S. James, S. Mazzotti, and R. K. Dokka (2007), Observation of glacial isostatic adjustment in "stable" North America with GPS, Geophys Res Lett, 34(2), https://doi.org/10.1029/2006gl027081.
  58. Shirzaei, M., and R. Bürgmann (2018), Global climate change and local land subsidence exacerbate inundation risk to the San Francisco Bay Area, Sci Adv, 4(3). https://doi.org/10.1126/sciadv.aap9234
  59. Sturges, W., and B. G. Hong (2001), Decadal Variability of Sea Level, in Sea Level Rise: History and Consequences, edited by B. C. Douglas, M. S. Kearney and S. P. Leatherman, pp. 165-180, Academic Press, San Diego, CA.
  60. Sweet, W., R. Kopp, C. Weaver, J. Obeysekera, R. Horton, E. Thieler, and C. Zervas (2017), Global and Regional Sea Level Rise Scenarios for the United States, edited by N. T. Report, NOS CO-OPS 083.
  61. Temmerman, S., Meire, P., Bouma, T.J., Herman, P.M., Ysebaert, T., and De Vriend, H.J. 2013. Ecosystem-based coastal defense in the face of global change. Nature 504 (7478): 79–83, https://doi.org/10.1038/nature12859
  62. Valle-Levinson, A., A. Dutton, and J. B. Martin (2017), Spatial and temporal variability of sea level rise hot spots over the eastern United States, Geophys Res Lett, 44(15), 7876-7882, https://doi.org/10.1002/2017GL073926.
  63. van Oldenborgh, G. J., K. van der Wiel, A. Sebastian, R. Singh, J. Arrighi, F. Otto, K. Haustein, S. H. Li, G. Vecchi, and H. Cullen (2017), Attribution of extreme rainfall from Hurricane Harvey, August 2017, Environ Res Lett, 12(12), https://doi.org/10.1088/1748-9326/aa9ef2.
  64. Velicogna, I., T. C. Sutterley, and M. R. van den Broeke (2014), Regional acceleration in ice mass loss from Greenland and Antarctica using GRACE time-variable gravity data, Geophys Res Lett, 41(22), 8130-8137, https://doi.org/10.1002/2014GL061052.
  65. Wake, L., G. Milne, and E. Leuliette (2006), 20th Century sea-level change along the eastern US: Unravelling the contributions from steric changes, Greenland ice sheet mass balance and Late Pleistocene glacial loading, Earth and Planetary Science Letters, 250(3), 572-580, https://doi.org/10.1016/j.epsl.2006.08.006.
  66. Wang HV, Loftis JD, Liu Z, Forrest D, Zhang J. (2014), The Storm Surge and Sub-Grid Inundation Modeling in New York City during Hurricane Sandy. Journal of Marine Science and Engineering; 2(1), 226-246, https://doi.org/10.3390/jmse2010226
  67. White, W. A., and T. A. Tremblay (1995), Submergence of Wetlands as a Result of Human-Induced Subsidence and Faulting Along the Upper Texas Gulf-Coast, J Coastal Res, 11(3), 788-807, http://www.jstor.org/stable/4298381.
  68. Yin, J. J., and P. B. Goddard (2013), Oceanic control of sea level rise patterns along the East Coast of the United States, Geophys Res Lett, 40(20), 5514-5520, https://doi.org/10.1002/2013gl057992.