VIMS

Dead Zones: VIMS Journal Articles

The following list is based on a search of VIMS-authored research articles from Thomson Reuters' Web of Science© using the title search term hypoxia or anoxia and the keyword search term dead zone. The list is updated at least biannually.

  1. Wang, P., H. Wang, and L. Linker, 2015. Relative Importance of Nutrient Load and Wind on Regulating Interannual Summer Hypoxia in the Chesapeake Bay. Estuaries and Coasts, 38(3): p. 1048-1061. http://doi.org/10.1007/s12237-014-9867-5
  2. Fry, B., et al., 2015. Carbon Dynamics on the Louisiana Continental Shelf and Cross-Shelf Feeding of Hypoxia. Estuaries and Coasts, 38(3): p. 703-721. http://doi.org/10.1007/s12237-014-9863-9
  3. Briggs, K.B., et al., 2015. Biogenic effects on cohesive sediment erodibility resulting from recurring seasonal hypoxia on the Louisiana shelf. Continental Shelf Research, 93: p. 17-26. http://doi.org/10.1016/j.csr.2014.11.005
  4. Breitburg, D.L., et al., 2015. Landscape-Level Variation in Disease Susceptibility Related to Shallow-Water Hypoxia. Plos One, 10(2). http://doi.org/10.1371/journal.pone.0116223
  5. Sturdivant, S.K., et al., 2014. Relationship between Hypoxia and Macrobenthic Production in Chesapeake Bay. Estuaries and Coasts, 37(5): p. 1219-1232. http://doi.org/10.1007/s12237-013-9763-4
  6. Long, W.C., et al., 2014. Individual, population, and ecosystem effects of hypoxia on a dominant benthic bivalve in Chesapeake Bay. Ecological Monographs, 84(2): p. 303-327. http://doi.org/10.1890/13-0440.1
  7. Lapointe, D., et al., 2014. Temperature, hypoxia, and mycobacteriosis: effects on adult striped bass Morone saxatilis metabolic performance. Diseases of Aquatic Organisms, 108(2): p. 113-127. http://doi.org/10.3354/dao02693
  8. Sturdivant, S.K., R.D. Seitz, and R.J. Diaz, 2013. Effects of seasonal hypoxia on macrobenthic production and function in the Rappahannock River, Virginia, USA. Marine Ecology Progress Series, 490: p. 53-68. http://doi.org/10.3354/Meps10470
  9. Sturdivant, S.K., M.J. Brush, and R.J. Diaz, 2013. Modeling the Effect of Hypoxia on Macrobenthos Production in the Lower Rappahannock River, Chesapeake Bay, USA. Plos One, 8(12). ARTN e84140 http://doi.org/10.1371/journal.pone.0084140
  10. Lake, S.J., et al., 2013. Internal versus external drivers of periodic hypoxia in a coastal plain tributary estuary: the York River, Virginia. Marine Ecology Progress Series, 492: p. 21-39. http://doi.org/10.3354/meps10468
  11. Hong, B. and J. Shen, 2013. Linking dynamics of transport timescale and variations of hypoxia in the Chesapeake Bay. Journal of Geophysical Research-Oceans, 118(11): p. 6017-6029. http://doi.org/10.1002/2013jc008859
  12. Bever, A.J., et al., 2013. Combining observations and numerical model results to improve estimates of hypoxic volume within the Chesapeake Bay, USA. Journal of Geophysical Research-Oceans, 118(10): p. 4924-4944. http://doi.org/10.1002/jgrc.20331
  13. Forrest, D.R., R.D. Hetland, and S.F. DiMarco, 2012. Multivariable statistical regression models of the areal extent of hypoxia over the Texas-Louisiana continental shelf (vol 6, 045002, 2011). Environmental Research Letters, 7(1). http://doi.org/10.1088/1748-9326/7/1/019501
  14. Feng, Y., S.F. DiMarco, and G.A. Jackson, 2012. Relative role of wind forcing and riverine nutrient input on the extent of hypoxia in the northern Gulf of Mexico. Geophysical Research Letters, 39. Artn L09601 http://doi.org/10.1029/2012gl051192
  15. Capossela, K.M., et al., 2012. Metabolic and cardiorespiratory responses of summer flounder Paralichthys dentatus to hypoxia at two temperatures. Journal of Fish Biology, 81(3): p. 1043-1058. http://doi.org/10.1111/J.1095-8649.2012.03380.X
  16. Forrest, D.R., R.D. Hetland, and S.F. DiMarco, 2011. Multivariable statistical regression models of the areal extent of hypoxia over the Texas-Louisiana continental shelf. Environmental Research Letters, 6(4). http://doi.org/10.1088/1748-9326/6/4/045002
  17. Diaz, R.J. and R. Rosenberg, 2011. Introduction to Environmental and Economic Consequences of Hypoxia. International Journal of Water Resources Development, 27(1): p. 71-82. http://doi.org/10.1080/07900627.2010.531379
  18. Breitburg, D., et al., 2011. Breathless Nights: Diel-Cycling Hypoxia and the Prevalence of Perkinsus Marinus (Dermo) Infections in Chesapeake Bay Oysters. Journal of Shellfish Research, 30(2): p. 488-488.
  19. Rabalais, N.N., et al., 2010. Dynamics and distribution of natural and human-caused hypoxia. Biogeosciences, 7(2): p. 585-619.
  20. Seitz, R.D., et al., 2009. Broad-scale effects of hypoxia on benthic community structure in Chesapeake Bay, USA. Journal of Experimental Marine Biology and Ecology, 381: p. S4-S12. http://doi.org/10.1016/J.Jembe.2009.07.004
  21. Long, W.C. and R.D. Seitz, 2009. Hypoxia in Chesapeake Bay Tributaries: Worsening effects on Macrobenthic Community Structure in the York River. Estuaries and Coasts, 32(2): p. 287-297. http://doi.org/10.1007/S12237-009-9132-5
  22. Breitburg, D.L., et al., 2009. Hypoxia, Nitrogen, and Fisheries: Integrating Effects Across Local and Global Landscapes. Annual Review of Marine Science, 1: p. 329-349. http://doi.org/10.1146/Annurev.Marine.010908.163754
  23. Shen, J., et al., 2008. Hypoxia in a coastal embayment of the Chesapeake Bay: A model diagnostic study of oxygen dynamics. Estuaries and Coasts, 31(4): p. 652-663. http://doi.org/10.1007/S12237-008-9066-3
  24. Long, W.C. and R.D. Seitz, 2008. Trophic interactions under stress: hypoxia enhances foraging in an estuarine food web. Marine Ecology-Progress Series, 362: p. 59-68. http://doi.org/10.3354/Meps07395
  25. Lim, H.S., et al., 2006. Hypoxia and benthic community recovery in Korean coastal waters. Marine Pollution Bulletin, 52(11): p. 1517-1526.
  26. Seitz, R.D., et al., 2003. Effects of hypoxia on predator-prey dynamics of the blue crab Callinectes sapidus and the Baltic clam Macoma balthica in Chesapeake Bay. Marine Ecology-Progress Series, 257: p. 179-188.
  27. Sagasti, A., J.E. Duffy, and L.C. Schaffner, 2003. Estuarine epifauna recruit despite periodic hypoxia stress. Marine Biology, 142(1): p. 111-122.
  28. Buzzelli, C.P., et al., 2002. Estimating the spatial extent of bottom-water hypoxia and habitat degradation in a shallow estuary. Marine Ecology-Progress Series, 230: p. 103-112.
  29. Sagasti, A., L.C. Schaffner, and J.E. Duffy, 2001. Effects of periodic hypoxia on mortality, feeding and predation in an estuarine epifaunal community. Journal of Experimental Marine Biology and Ecology, 258(2): p. 257-283.
  30. Diaz, R.J., 2001. Overview of hypoxia around the world. Journal of Environmental Quality, 30(2): p. 275-281.
  31. Zimmerman, A.R. and E.A. Canuel, 2000. A geochemical record of eutrophication and anoxia in Chesapeake Bay sediments: anthropogenic influence on organic matter composition. Marine Chemistry, 69(1-2): p. 117-137.
  32. Zimmerman, A.R. and E.A. Canuel, 2000. Correction: A geochemical record of eutrophication and anoxia in Chesapeake Bay sediments: anthropogenic influence on organic matter composition (vol 69, pg 117, 2000). Marine Chemistry, 72(1): p. 77-77.
  33. Nestlerode, J.A. and R.J. Diaz, 1998. Effects of periodic environmental hypoxia on predation of a tethered polychaete, Glycera americana: implications for trophic dynamics. Marine Ecology-Progress Series, 172: p. 185-195.
  34. Anderson, R.S., et al., 1998. Effects of tributyltin and hypoxia on the progression of Perkinsus marinus infections and host defence mechanisms in oyster, Crassostrea virginica (Gmelin). Journal of Fish Diseases, 21(5): p. 371-379.
  35. Park, K.O., A.Y. Kuo, and B.J. Neilson, 1996. A numerical model study of hypoxia in the tidal Rappahannock River of Chesapeake Bay. Estuarine Coastal and Shelf Science, 42(5): p. 563-581.
  36. Baker, S.M. and R. Mann, 1994. Description of Metamorphic Phases in the Oyster Crassostrea-Virginica and Effects of Hypoxia on Metamorphosis. Marine Ecology-Progress Series, 104(1-2): p. 91-99.
  37. Baker, S.M. and R. Mann, 1994. Feeding Ability during Settlement and Metamorphosis in the Oyster Crassostrea-Virginica (Gmelin, 1791) and the Effects of Hypoxia on Postsettlement Ingestion Rates. Journal of Experimental Marine Biology and Ecology, 181(2): p. 239-253.
  38. Baker, S.M. and R. Mann, 1994. Description of Metamorphic Phases in the Oyster Crassostrea virginica and Effects of Hypoxia on Metamorphosis. Marine Ecology-Progress Series, 104(1-2): p. 91-99.
  39. Baker, S.M. and R. Mann, 1994. Feeding Ability During Settlement and Metamorphosis in the Oyster Crassostrea virginica (Gmelin, 1791) and the Effects of Hypoxia on Postsettlement Ingestion Rates. Journal of Experimental Marine Biology and Ecology, 181(2): p. 239-253.
  40. Pihl, L., et al., 1992. Hypoxia-Induced Structural-Changes in the Diet of Bottom-Feeding Fish and Crustacea. Marine Biology, 112(3): p. 349-361.
  41. Llanso, R.J., 1992. Effects of Hypoxia on Estuarine Benthos - the Lower Rappahannock River (Chesapeake Bay), a Case-Study. Estuarine Coastal and Shelf Science, 35(5): p. 491-515.
  42. Baker, S.M. and R. Mann, 1992. Effects of Hypoxia and Anoxia on Larval Settlement, Juvenile Growth, and Juvenile Survival of the Oyster Crassostrea virginica. Biological Bulletin, 182(2): p. 265-269.
  43. Pihl, L., S.P. Baden, and R.J. Diaz, 1991. Effects of Periodic Hypoxia on Distribution of Demersal Fish and Crustaceans. Marine Biology, 108(3): p. 349-360.
  44. Kuo, A.Y., K. Park, and M.Z. Moustafa, 1991. Spatial and Temporal Variabilities of Hypoxia in the Rappahannock River, Virginia. Estuaries, 14(2): p. 113-121.
  45. Widdows, J., R.I.E. Newell, and R. Mann, 1989. Effects of Hypoxia and Anoxia on Survival, Energy-Metabolism, and Feeding of Oyster Larvae (Crassostrea-Virginica, Gmelin). Biological Bulletin, 177(1): p. 154-166.
  46. Kuo, A.Y. and B.J. Neilson, 1987. Hypoxia and Salinity in Virginia Estuaries. Estuaries, 10(4): p. 277-283.