# Contents

2018-2019 Executive Summary ................................................................. iii

Preface: *Ecological Monitoring Program at VIMS-ESL* ........................................ iv

Chapter 1. Ecological Monitoring Program Overview (2018 & 2019) ...................... 1

Chapter 2. Water Quality

  *Section 2-1: Fixed Sensor* ................................................................. 5
  *Section 2-2: Data Flow* ................................................................. 25

Chapter 3. Biofilm Community ................................................................. 34

Chapter 4. Oyster Population

  *Section 4-1: Oyster Settlement* ...................................................... 48
  *Section 4-2: Intertidal Oyster Reef Demographics* ............................ 60

Chapter 5. Epi-benthic Community Structure

  *Section 5-1: Benthic Soft-sediment Community* ................................. 78
  *Section 5-2: Epi-benthic Hard Substrate Community* ......................... 102

Chapter 6. Mapping Coastal Change

  *Section 6-1: Wachapreague Inlet Vicinity Shoreline Mapping* ............... 128
  *Section 6-2: Finney Creek Marsh Dieback Mapping* ........................... 142
  *Section 6-3: Sediment Characterization* .......................................... 149
2018-2019 Executive Summary

An Ecological Monitoring Program (EMP) has been established at the Virginia Institute of Marine Science Eastern Shore Laboratory (VIMS ESL) for the coastal environment near the lab. The goals of the initiative are to 1) provide status and trends information to scientists who study and regulators who manage Virginia’s marine resources, 2) provide a scientific context for scientists’ research and grant proposals 3) provide pedagogical enrichment to educators for their classes, and 4) build capacity in staff expertise and training of interns and students at VIMS ESL.

The program formalizes and standardizes data collection for a long-term status and trends database as an asset combined with marine operations and shore support provided by VIMS ESL. The standard methods also provide visiting scientists with protocols for consistent and comparable work. The EMP includes electronic water quality stations, oyster settlement and adult population dynamics, microbial biofilm growth, characterization of benthic communities in soft sediments and oyster reefs, sediment characteristics, and drone surveillance of salt marsh die back and Wachapreague Inlet dynamics. While this document focuses on these core areas of our monitoring activities, results of other VIMS ESL research on clam, scallop and oyster aquaculture, bay scallop restoration, and shorter-term grant supported research projects are reported elsewhere.

Our real-time and archived water quality data, both the current electronic systems and records beginning in the 1960s, have been in demand by the aquaculture industry and scientists. Weekly biofilm growth on standardized plates provides a biological sensor for nutrients, water quality and productivity. Oyster settlement data reflects the condition of seaside oyster populations, combining historical records with ongoing assessment. In 2019, annual cumulative spat set as high as 62,000 oysters per m² was recorded. Overall 2018 was an average settlement year, and 2019 a bit above average. Benchmarks for adult oyster population demographics were established. The epi-benthic communities of soft-sediment, intertidal oyster reefs and subtidal shell beds were described based on data gathered from >7,000 individual organisms representing ~ 90 genera. Substantial change in the vicinity of Wachapreague Inlet was documented based on yearly aerial drone surveys encompassing ~190 hectares of island/marsh and ~16,600 m of shoreline. Aerial drone near-infrared surveys continued in an area of marsh dieback (~30 hectares) and will contribute to determining whether this area is continuing to expand, recovering, or has reached some form of stasis. Characterization of sediments at 108 and 93 sites during 2018 and 2019, respectively will set a baseline for determining future changes, especially with regard to carbon storage in this productive and organic rich coastal marine ecosystem.

The program has been partially supported by donations from Chuck and Janet Woods and donors to the VIMS ESL summer intern program. VIMS ESL summer interns are high school and undergraduate students receiving paid internships from the Bonnie Sue Scholarship Foundation Fund. During 2018 and 2019, 2 local high school and 5 local college students participated the EMP research activities, providing excellent technical training in the conduct of field and laboratory research. The full report is available on William & Mary Scholar Works at: https://doi.org/10.25773/jz0w-3x72
Ecological Monitoring Program at the Virginia Institute of Marine Science Eastern Shore Laboratory (VIMS ESL)

Authors: PG Ross & Richard A Snyder
Virginia Institute of Marine Science, Eastern Shore Laboratory, Wachapreague, VA

The VIMS ESL mission is to serve as a field station and coastal seawater laboratory for visiting and resident basic marine science and aquaculture research, marine science education, outreach, and advisory service to the Commonwealth of Virginia, particularly with regard to marine resources of the Eastern Shore of Virginia. To implement this mission, VIMS ESL provides a platform for field and lab research, education, and advisory service activities by both resident and visiting researchers and educators from around the world. This monitoring program was designed to support that mission in three ways:

1. To provide an environmental context for researchers and educators who may only visit briefly, establishing a value-added backdrop in which to make greater sense of short-term research results and educational programming
2. Establish a record of long-term environmental data for tracking environmental status and trends for this predominantly unspoiled coastal region
3. Engage interns and students in rigorous technical scientific training while they contribute to a larger long-term effort.

We consider this mission support to be as vital as the marine operations and onshore facilities support we provide for high quality marine education and research in a remote and undeveloped region of U.S. mid-Atlantic coastal marine habitat.

Geographic Setting and Rationale

The Eastern Shore of Virginia (ESVA) is the narrow southern end of the Delmarva Peninsula, averaging 10 miles wide and 85 miles long from Pocomoke Sound on bayside and Chincoteague island on seaside to Fisherman’s Island National Wildlife Refuge at the mouth of the Chesapeake Bay. Its remote and rural setting features pristine natural barrier islands, bays, creeks and marshes along the Atlantic coast unfettered by human development and now protected by the Nature Conservancy, the Commonwealth of Virginia, and the federal government. The region has been designated by the United Nations Education, Scientific, and Cultural Organization (UNESCO) as part of their Biosphere Reserve System, has National Natural Landmark status with the US Department of the Interior, and is part of the Western Hemisphere Shorebird Reserve Network. Short watersheds with limited freshwater make the bayside estuaries and seaside creeks and shallow coastal bays unique within the Chesapeake Bay region. Extensive marshes, oyster reefs, and seagrasses add to the natural and commercial
seafood value of the regional marine resources. The region provides an excellent sentinel site that integrates broader anthropomorphic impacts and environmental change in a relatively undeveloped coastal environment.

The VIMS ESL is in Wachapreague, VA, directly located on Wachapreague creek, a location that is well situated to provide access and facilities support for research, education, and service pertaining to these regional marine resources. Extensive aquaculture occurs in the region for oysters and hard clams. The hard clam industry on the ESVA is the largest producer of cultured hard clams in the nation. Dr. Mike Castagna at the VIMS ESL was largely responsible for the research and development that created the current clam industry, taking advantage of excellent quality seawater and habitats adjacent to the laboratory, including leased bottom maintained specifically for research purposes.

The VIMS ESL, as a launch point for diverse resident and visiting research, is somewhat unique in its access to high quality, high salinity seawater and a relatively pristine and complex barrier island/coastal lagoon system in the mid-Atlantic. Long-term records for environmental data are generally lacking for this outdoor laboratory. From water quality data to bathymetry maps and from local community associations to diversity trends, the dearth of long-term datasets is not unique to this research lab. Sentinel, benchmark, and monitoring data are typically not well funded by agencies supporting short duration project cycles, yet are important to understand the implications of experimental work and longer-term environmental change.

The need for such data is widely acknowledged, even if budget priorities make support difficult. Current sea-level rise and climate change require records if we wish to track status and trends in the environment and marine resources. There are few examples of large-scale regional collaborative projects that endeavor to holistically develop benchmark and sentinel monitoring programs (e.g. “Sentinel Monitoring for Climate Change in the Long Island Sound Estuarine and Coastal Ecosystems of New York and Connecticut”, 2011; Smithsonian Institution Marine Geo program).

A lack of high resolution multiparameter water quality data in support of research and education was addressed in 2016 with the creation of continuously monitored stations in Wachapreague Channel at VIMS ESL, in southern Burton’s Bay for the VIMS intertidal oyster research lease (Custis Channel), and a third station established in October 2018 in Willis Wharf (Parting Creek). Data from these stations are accessible in near-real time (~15 min increments) online (see Chapter 2 for details), and archived records are provided on request. They have been extremely useful to researchers and educators in the ESL-Seawater Lab, for background to ongoing field research on the Custis Channel reef, and have been invaluable to the aquaculture industry hatcheries in Willis Wharf.
Specific objectives for the ESL-EMP:

1. **Collect spatial and temporal data and provide environmental characterizations.** The EMP dataset and reports will provide visitors with the background and context for education activities and focused research proposals and funded projects. This is a value-added asset in support of education and research conducted at VIMS ESL.

2. **Establish status and trends for coastal environmental change analysis.** A lack of baseline and continuing environmental data hampers analysis of change and management of marine resources in the dynamic coastal ecosystems. VIMS ESL is uniquely situated to access unspoiled coastal marine habitats that integrate regional and global environmental impacts, and thus provides access and an excellent outdoor laboratory and sentinel site for broader environmental trajectories.

3. **Support aquaculture industry and commercial and recreational fishing communities.** Documenting episodic events and elucidating real long-term trends can help inform local decision making by private enterprise and government regulators, enhancing resilience of this important economic sector.

4. **Support student research & education.**
   a. **Provide research opportunities for VIMS and William and Mary students.** The VIMS-ESL has a dedicated endowment (Owens Family Endowment) and other donor funds (ESL General endowed funds, Oceanside Conservation, Woods Family, etc.) to support student research and education. This program will provide training and tasks that get students involved with contributing to a larger scale scientific endeavor. The program also provides contextual background data allowing data mining opportunities and background for undergraduate and graduate research projects.
   
   b. **Provide research opportunities for interns.** ESL has an ongoing summer internship program supported by donors to the Bonnie Sue Scholarship fund. The interns are provided summer employment and research experiences with ESL staff and visiting scientists. Projects and tasks within the EMP provide a wide range of training and experiences to assist interns in developing their careers.
   
   c. **Enhance ESL education programs.** The EMP supports our educational field trips/lab experiences with a quantitative data gathering/sharing experience for visiting groups, who can both add to the data and use the multi-year data for instructional purposes.
5. Facilitate capacity building

a. *Maintain/develop staff expertise.* Over the last several decades the ESL has developed a reputation for its benthic ecology work, identifying and quantifying community assemblages. The ongoing EMP facilitates maintaining and developing standardized procedures and equipment, staff skills, and taxonomic expertise in this area in support of collaborations, visiting researchers, and grant proposals.

b. *Attract new users.* The EMP provides a complimentary asset to the marine operations and shore facilities provided by VIMS ESL, a value-added enrichment for scientists seeking platforms for grant funded research and educators seeking to provide opportunities for student to explore new environments.

c. *Providing data for future funding/research.* The environmental characterization provided by the EMP program has already been used by researchers seeking grant funding to work at ESL. The opportunity to conduct research within the context of a broader understanding of the regional environment makes proposals seeking precious grant funding more competitive.
Chapter 1. Ecological Monitoring Program Overview

Authors: PG Ross & Richard A Snyder
Virginia Institute of Marine Science, Eastern Shore Laboratory, Wachapreague, VA

2018 & 2019 Metrics

The EMP framework was designed to collect status and trends environmental and ecological data near the Eastern Shore Laboratory. Table 1-1 provides a list of data collected during 2018 & 2019. Details of specific data collection methods and locations can be found in the respective chapters.

The overall strategy was based on accumulated experience and observations of ESL staff during work on many different research projects. A stratified scheme of three geographic areas with different features was established (Fig. 1-1): Bradford Bay (shallow, diffuse tidal currents, adjacent to uplands); a portion of Burton’s Bay (shallow, oyster reefs, tidal currents) and the Wachapreague Inlet vicinity (high energy, offshore weather impacts, deep channels, tidal currents). The following metrics were sampled within this geographic matrix:

- Oyster settlement
- Biofilm growth
- Benthic community: soft sediments (intertidal, shallow subtidal, & channel edge)
- Epi-benthic community: hard substrate (intertidal, & subtidal)
- Sediment mapping (intertidal, shallow subtidal, & channel edge)

Other metrics have either logistical constraints (e.g. water quality stations) or are very specific to certain locations (e.g. mapping and education-related efforts) and are not, therefore, designed with the geographic stratification:

- Water quality
- Finney Creek marsh dieback mapping
- Wachapreague Inlet marsh/island mapping

10-yr Plan

It is our intention that the EMP be a long-term dataset. To initiate the effort, we have developed a 10-yr plan for collecting various metrics (Table 1-1). The potential for rates of change in the individual metrics was used to space effort temporally. The plan is subject to adjustment based on data results, funding, needs of visiting researchers and educators, and demands of other projects on staff and resources. The EMP sampling plan will be re-visited and adjusted yearly.
Dissemination of Data

Data summaries and raw data will be made available to visiting researchers, students and the general public upon specific requests. Additionally, results of the EMP will be broadcast by the following:

- **VIMS ESL Annual Report**: Internal progress review and discussions
- **Marine Life Day Display**: Public open-house third Saturday of September each year. Presentation of updated data and discussion of cumulative patterns.
- **VIMS ESL dedicated webpage**: The lab website will have links to downloadable reports and other products from this effort: [https://www.vims.edu/esl/research/emp/index.php](https://www.vims.edu/esl/research/emp/index.php)
- **VIMS ESL Facebook page**: Ongoing analysis of results of interest to regional science and aquaculture, such as the weekly oyster spat set results, unique or unusual events: [https://www.facebook.com/VIMSESL](https://www.facebook.com/VIMSESL)
- **Peer-reviewed publications** will be submitted in appropriate journal outlets and presentations of data will be made at professional meetings, especially as data are accumulated sufficiently to identify trends.

Student Involvement

Multiple students intensively participated in the 2018 & 2019 EMP during June-August as part of the ESL summer internship program. Below is a list of their academic locations:

- Broadwater Academy (college preparatory high school)
- Nandua High School
- College of William and Mary
- Christopher Newport University
- Old Dominion University
- University of Miami
- Virginia Tech

Funding gratefully acknowledged

The Bonnie Sue Internship Program supported summer student interns that assisted with the project. A donation by Janet and Chuck Woods covered an intern salary and operating expenses for the project.
Table 1-1. VIMS ESL Ecological Monitoring Program 10-year sampling plan.

<table>
<thead>
<tr>
<th>Component</th>
<th>2018</th>
<th>2019</th>
<th>2020</th>
<th>2021</th>
<th>2022</th>
<th>2023</th>
<th>2024</th>
<th>2025</th>
<th>2026</th>
<th>2027</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oyster settlement</td>
<td>X</td>
</tr>
<tr>
<td>Oyster disease (Dr. Ryan Carnegie)</td>
<td>X</td>
</tr>
<tr>
<td>Biofilms-weekly (June-July)</td>
<td>X</td>
</tr>
<tr>
<td>Biofilms-1 week rate (Chla &amp; OM)</td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Benthic community--soft sediments</td>
<td>X</td>
</tr>
<tr>
<td>Epi-benthic community--hard substrate</td>
<td>X</td>
</tr>
<tr>
<td>Sediment mapping: <em>benthic community sites</em> (surficial SOM &amp; Chla)</td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sediment mapping: <em>benthic community sites</em> (SOM &amp; fract. 5 cm interval)</td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sediment mapping: <em>full grid</em> (surficial SOM/Chla; SOM/fract. 5 cm interval)</td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Water Quality-sonde stations</td>
<td>X</td>
</tr>
<tr>
<td>Water Quality-class data-flow etc. (Dr. Mark Brush)</td>
<td>X</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Finney Creek marsh dieback mapping</td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Wachapreague Inlet marsh/island mapping</td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>
Fig. 1-1 Three geographic regions of the ESL-EMP with some sampling locations from 2018: Bradford Bay (relatively stable, but adjacent to uplands); a portion of Burton’s Bay (anecdotal signs of some current changes) and the Wachapreague Inlet vicinity (very dynamic).