Marine Flora and Fauna of the Northeastern United States. Copepoda: Lernaeopodidae and Sphyriidae

Ju-Shey Ho

December 1977
FOREWORD

This issue of the "Circulars" is part of a subseries entitled "Marine Flora and Fauna of the Northeastern United States." This subseries will consist of original, illustrated, modern manuals on the identification, classification, and general biology of the estuarine and coastal marine plants and animals of the northeastern United States. Manuals will be published at irregular intervals on as many taxa of the region as there are specialists available to collaborate in their preparation.

The manuals are an outgrowth of the widely used "Keys to Marine Invertebrates of the Woods Hole Region," edited by R. I. Smith, published in 1964, and produced under the auspices of the Systematics-Ecology Program, Marine Biological Laboratory, Woods Hole, Mass. Instead of revising the "Woods Hole Keys," the staff of the Systematics-Ecology Program decided to expand the geographic coverage and bathymetric range and produce the keys in an entirely new set of expanded publications.

The "Marine Flora and Fauna of the Northeastern United States" is being prepared in collaboration with systematic specialists in the United States and abroad. Each manual will be based primarily on recent and ongoing revisionary systematic research and a fresh examination of the plants and animals. Each major taxon, treated in a separate manual, will include an introduction, illustrated glossary, uniform originally illustrated keys, annotated checklist with information when available on distribution, habitat, life history, and related biology, references to the major literature of the group, and a systematic index.

These manuals are intended for use by biology students, biologists, biological oceanographers, informed laymen, and others wishing to identify coastal organisms for this region. In many instances the manuals will serve as a guide to additional information about the species or the group.

Geographic coverage of the "Marine Flora and Fauna of the Northeastern United States" is planned to include organisms from the headwaters of estuaries seaward to approximately the 200-m depth on the continental shelf from Maine to Virginia, but may vary somewhat with each major taxon and the interests of collaborators. Whenever possible representative specimens dealt with in the manuals will be deposited in the reference collections of major museums in the region.

After a sufficient number of manuals of related taxonomic groups have been published, the manuals will be revised, grouped, and issued as special volumes. These volumes will thus consist of compilations of individual manuals within phyla such as the Coelenterata, Arthropoda, and Mollusca, or of groups of phyla.
CONTENTS

Introduction ... 1
Glossary .. 2
Key to the marine lernaeopodoid copepods of the northeastern United States 3
Annotated systematic list 11
Selected bibliography 12
Systematic index 13
Acknowledgments 14
Coordinating Editor's comments 14

The National Marine Fisheries Service (NMFS) does not approve, recommend or endorse any proprietary product or proprietary material mentioned in this publication. No reference shall be made to NMFS, or to this publication furnished by NMFS, in any advertising or sales promotion which would indicate or imply that NMFS approves, recommends or endorses any proprietary product or proprietary material mentioned herein, or which has as its purpose an intent to cause directly or indirectly the advertised product to be used or purchased because of this NMFS publication.
INTRODUCTION

The "Order Lernaeopodidea" as defined by Yamaguti (1963) consists of four families of parasitic copepods. They are Lernaeopodidae, Chondracanthidae, Naobranchiidae, and Sphyriidae. However, Ho (1970) has presented evidence for removing from it the Chondracanthidae and Kabata (1969b) has added to it a new family, Tanypleuridae. Therefore, the "Order Lernaeopodidea" as it now stands consists of four families: Lernaeopodidae, Naobranchiidae, Sphyriidae, and Tanypleuridae. Although there are doubts about the constitution of these four families of Copepoda as an Order, nevertheless, they form a coherent group and, for the sake of convenience, will be called "lernaeopodoids" throughout this sub-series of the manual.

The lernaeopodoid Copepoda consists of some 300 species of extremely transformed copepods. They are all parasites of fish and known to fishermen as "gill maggots," due to their frequent occurrence on the gills of fish and the habit of wiggling their saclike bodies when irritated. Our knowledge of the biology of lernaeopodoids is particularly poor. Many species are vaguely known and have never been rediscovered or redescribed since their original description. A complete life history is known of some freshwater representatives (Achtheres and Salmincola) and only a few larval stages are known of the marine species. Information about their relationships with the host, to which they are permanently attached, is even more scanty.

The adult female of lernaeopodoids characteristically lacks copepod features, with a cylindrical cephalothorax attached to a baggy trunk and carrying no swimming legs. It attaches to the host either by burrowing into the flesh with its modified, elongate cephalothorax (Fig. 1), or by planting the bulla at the tip of its modified maxillae (Fig. 2) into the integument. The members of the family Naobranchiidae are different from other lernaeopodoids in fastening to their hosts by wrapping the modified beltlike maxillae around the gill filament. Adult female Lernaeopodidae and Naobranchiidae have their maxillae located posterior to the maxillipeds. According to Kabata and Cousens' (1973) study on the development of a freshwater lernaeopodid, this peculiar and unique transposition of appendages occurs during the later period of larval development. The lernaeopodid larvae, copepodid and chalimus stages, are parasitic on the same host where the adults are found.

Department of Biology, California State University, Long Beach, CA 90840.

![Diagram](image-url)
The female lernaeopodoids damage their hosts by feeding on the tissue of the fins and gills and by injuring host tissues with the bullae and the anchorlike cephalothorax. Their burrowing cephalothorax sometimes perforates the abdominal wall and penetrates the visceral cavity. The sphyriids show some preference for attachment to the region of the dorsal sort of the host, causing serious deleterious effects to the host.

In collecting specimens of lernaeopodoids, one must be very careful not to damage the burrowing or attaching part of the parasite. For, in many cases, this anchoring part of the parasite is of prime taxonomic importance (Kabata and Cousens 1972). If removal of the parasite must be done in the field without any optical aid, a generous amount of host tissue must be taken together with the parasite. The parasite is preferably preserved and stored in 70% alcohol. The study of its external anatomy sometimes requires dissection of the appendages. This is done first by soaking the specimen in lactic acid for several hours and then removing the appendages under the dissecting microscope with a pair of fine needles. These appendages should be mounted in a drop of lactic acid (80%) on a slide and then studied with a compound microscope. Staining of the appendages is generally not necessary. A special method for studying the copepod appendages devised by Humes and Gooding (1964) is highly recommended.

GLOSSARY

The lernaeopodoid copepods are so much transformed that some of their external features are quite different from a typical copepod. Therefore, certain terms which are not used in the anatomy of an ordinary copepod have been coined by investigators in working on this group of Copepoda. The following terms are used in this key to describe certain external features that are useful in identification. Some of them are illustrated in Figures 1 and 2.

antenna one of second pair of appendages that has fleshy appearance, with either one lobe (uniramous) or two lobes (biramous).
bulla a button-, cup-, or knoblike structure located at the terminal end of the maxillae. It is an attachment organ found in Lernaeopodidae.
carapace a dorsal shieldlike plate on the anterior end of the head.
cephalothorax a cylindrical, long structure representing the fused head and various parts of the thorax.
egg sac a sac or cylinder attached to the posterior end of the body and containing fertilized, developing eggs.
fimbriate process a cluster of fingerlike projections occurring either on the maxillae or at the posterior end of the body.
genital process a single protrusion located at the center of the posterior end of the body.
head anterior end of the body that bears the antennules, antennae, and the mouth parts. It is usually enlarged and/or covered with a carapace.
maxilla in Lernaeopodidae a modified, fleshy, armlike structure that holds the bulla. It is translocated to the posterior end of the cephalothorax in the course of development.

maxilliped one of sixth pair of appendages that is translocated in Lernaeopodidae and Naobranchiidae to the posterior end of head right behind the mouth or at a short distance from it.

neck a portion of transformed cephalothorax appearing long and slender.

posterior processes a pair of either simple or branched protrusions located at the posterior end of the body. They can originate either dorsal to the egg sacs (dorsal posterior processes) or ventral to the egg sacs (ventral posterior processes).

trunk a tremendously enlarged part of the body that represents the fused various parts of thorax and genital segment, with the vestigial abdomen identified by a slit (see Figs. 1, 8).

KEY TO THE MARINE LERNAEOPODOID COPEPODS OF THE NORTHEASTERN UNITED STATES

The following key is constructed for the 16 species of female sphyriids and lernaeopodids that have been reported parasitic on fishes from Maine to Virginia. A separate key to the male is not given because the dwarf male is characteristically attached to its female partner; an identification of the female will automatically lead to the identity of the male. Furthermore, some male lernaeopodoids do not show specific or even generic differences.

1 Attached to host by burrowing its modified anterior part of body (head and neck) (Fig. 1).
 Sphyriidae ... 2

1 Attached to host by means of bulla at the tip of modified maxillae (Fig. 2). Lernaeopodidae 5

2 (1) Posterior processes simple cylinder (Fig. 1). Up to 35 mm .. Pseon elongatus

2 (1) Posterior processes profusely branched (Fig. 3B) or covered with short cylinders (Fig. 4B) 3

Figure 3.—Sphyrius lampsi: A, head and neck; B, trunk showing posterior processes.
3 (2) Head short and wide, with enormous lateral processes (Fig. 3A); posterior processes branched (Fig. 3B). Up to 60 mm Sphyrion lumpi

3 (3) Head long and cylindrical; posterior processes covered with short cylinders (Fig. 4B) Lophoura bouvieri

4 (3) Head stout; anterior end of neck bearing spherical outgrowths (Fig. 4A). Up to 40 mm Lophoura bouvieri

4 (3) Head slender; anterior end of neck bearing irregular processes (Fig. 5). Up to 55 mm Lophoura gracilis

Figure 4.—Lophoura bouvieri: A. head and neck; B. trunk showing posterior processes.

Figure 5.—Lophoura gracilis: head and neck.
5 (1) Trunk and maxillae with fimbriate processes (Fig. 6). Up to 8 mm. Thysanote poma cm thi

5 (1) No fimbriate processes on either trunk or maxillae

6 (5) Maxillae short, rudimentary, or lacking; posterior processes absent (Fig. 7A)

6 (5) Maxillae long; posterior processes present (Fig. 2)
7 (6) Antenna uniramous (Fig. 7B) .. 8

7 (6) Antenna biramous (Fig. 9B) .. 9

8 (7) Genital process present (Fig. 7A). Up to 4 mm Clavela adunca

8 (7) Genital process absent (Fig. 8). Up to 6 mm Clavela insolita

Figure 7.—Clavela adunca; A, lateral view; B, antenna.
Figure 8.—Clavellodes nasuta; dorsal view.

Figure 9.—Clavellodes rugosa: A. dorsal view; B. antenna.
9 (7) Cephalothorax attached to anterior end of trunk (Fig. 9A). Up to 5 mm. \textit{Clavellodes rugosa}

9 (7) Cephalothorax attached to dorsal surface of trunk (Fig. 10). \textit{10}

\begin{center}
\includegraphics[width=0.5\textwidth]{figure10.png}
\end{center}

\textit{Figure 10.—\textit{Clavellodes spinosa}; dorsal view.}

10 (9) Egg sacs short, attached to trunk by one side and at an angle to body axis (Fig. 10). Up to 2 mm. \textit{Clavellisa spinosa}

10 (9) Egg sacs long, attached to trunk by their ends and parallel with body axis (Fig. 11). Up to 4 mm. \textit{Clavellisa cordata}

\begin{center}
\includegraphics[width=0.5\textwidth]{figure11.png}
\end{center}

\textit{Figure 11.—\textit{Clavellisa cordata}; dorsal view.}
11 (6) One pair of posterior processes dorsal to egg sacs (Fig. 12); parasite of elasmobranchs

11 (6) One or two pairs of posterior processes; when one pair, always ventral to egg sacs (Fig. 14); parasite of teleosts

Figure 12.—Pseudocharopinus bicaudatus; lateral view.

Figure 13.—Pseudocharopinus concavus; lateral view.

12 (11) Maxillae close to maxillipeds (Fig. 12). Up to 5 mm

Pseudocharopinus bicaudatus

12 (11) Maxillae far away from maxillipeds (Fig. 13). Up to 7 mm

Pseudocharopinus concavus
13 (11) One pair of posterior processes (Fig. 14) .. 14

13 (11) Two pairs of posterior processes (Fig. 2) ... 15

14 (13) Genital process extremely small; trunk distinctly longer than wide (Fig. 14). Up to 8 mm. *Brachiella rostrata*

14 (13) Genital process large; trunk about as long as wide (Fig. 15). Up to 6 mm. *Brachiella mitrata*

![Genital Process](image1.png)

Figure 14. *Brachiella rostrata*; ventral view.

![Genital Process](image2.png)

Figure 15. *Brachiella mitrata*; ventral view.
VENTRAL POSTERIOR PROCESSES SLIGHTLY LONGER THAN DORSAL; CEPHALOTHORAX DISTINCTLY LONGER THAN TRUNK (Fig. 2). UP TO 5 MM ... Brachiella gulosa

VENTRAL POSTERIOR PROCESSES MUCH LONGER THAN DORSAL; CEPHALOTHORAX ABOUT ONE-HALF OF TRUNK (Fig. 16). UP TO 10 MM ... Brachiella elegans

Figure 16.—Brachiella elegans; lateral view.

ANNOTATED SYSTEMATIC LIST

The following checklist of lernaeopodoid Copepoda is arranged alphabetically in families, genera under their family, and species under their genus. Notes on host and distribution are given. When more than one host is known, their names are arranged alphabetically in genera and species under their genus. If the common name of the host is known, it is given immediately preceding its scientific name. References to important works are cited.

Family LERNAEOPODIDAE

Brachiella elegans Richardi 1880. On gills of leerfish, Lichia amia, in Mediterranean; greater amberjack, Seriola dumerili, from Woods Hole, Mass.; gulfmackerel, Trachinotus glaucocephalus, in Mediterranean (Wilson 1915).

Clavella adunca (Strom 1762). Synonym: Clavella uncinata (Müller 1776). On gills, buccal cavity, and fins of polar cod, Boreogadus saida, from Greenland; European dragonet, Callionymus lyra, from Britain; sharpnose, Diplodus sargus, in Mediterranean; rudderfish, Doryrhamphus filamentosus, off Pacific coast of South America; Pacific cod, Gadus macrocephalus, in North Pacific off British Columbia, Alaska, Bering Islands, Hokkaido, and Okhotsk Sea; Atlantic cod, G. morhua, in North Atlantic off British Isles, Iceland, Greenland, Newfoundland, Nova Scotia, Maine, and Massachusetts; Greenland cod, G. ogac, from Greenland; G. maraena from Ceylon; greening, Hexagrammos octogrammus, in Sea of Japan; Newfoundland eelpout, Lycodes laualaei, off Nantucket, Mass.; Macrurus fabricii in Davis Strait; M. whitsoni off Antarctica; whiting, Merlangius merlangus, in North
Sea; European hake, Merluccius merluccius, in Adriatic Sea; Pacific hake, Merluccius productus, off British Columbia; butterfish, Pholis gunnellus, in Mediterranean; Pleurogrammus sp. in Sea of Japan; pollock, Pollachius pollock, in North Sea; pollock, P. viridescens, off Iceland and in Skagerrak; bass, Sargus rondellus, in Mediterranean; redfish, Sebastes marinus, from Davis Strait; Greenland shark, Somniosus microcephalus, off Iceland and Greenland; Trematomus loennbergi from east Antarctica; bib, Trisopterus liacus, in North Sea (Shino 1986).

Pseudocharopinus bicaudatus (Krøyer 1837). On gills of common stingray, Dasyatis pastinaca, in North Sea; gray smoothhound, Mustelus californicus, from Pacific Grove, Calif.; smooth dogfish, M. canis, from Harpwell, Maine; eagle ray, Myliobatis aquila, from Mediterranean; Rhinopiera marginata from Mediterranean; spiny dogfish, Squallus acanthias, in North Sea, Barents Sea, Sea of Japan, and off coast of New England; piked dogfish, S. ferrugineus, off Angola; Trygon margarita off Senegal; T. marmorata off Senegal (Kabata 1964).

Pseudochromopsis concavus (Wilson 1913). On gills of southern stingray, Dasyatis americana, off Texas; roughtail stingray, D. centroura, off Marthas Vineyard, Mass.; D. hastata from Jamaica; Atlantic stingray, D. sabina, off Florida (Wilson 1913).

Thysanoctia pomacanthi Krøyer 1837. On gills of gray angelfish, Pomacanthus arcuatus, from Massachusetts to Florida, off Bahamas; French angelfish, P. purpurascens.
SYSTEMATIC INDEX

Achtheres ... 1
Brachiella ... 11
elegans .. 11
gulosa .. 11
mitrata ... 10, 11
rostrata ... 10, 11
Caligoida ... 2
Chondracanthidae 1
Clavella ..
adunca .. 6, 11
insolita ... 6, 12
pinguis .. 12
uncinata .. 11
Clavellisa ...
cordata .. 8, 12
spinosa .. 8, 12
Clavelloides rugosa 8, 12

Copepoda ... 1, 2, 11
Cyclopoida ... 2
Lernaeopodidae 1, 2, 3, 11
Lernaeopodoidea 1
Lophoura ..
bouvieri ... 4, 12
gracilis .. 4, 12
Naobranchiidae 1, 2, 3
Paeon elongatus
Pseudocheropinus
 bicuspidatus 9, 12
 concavus ... 9, 12
Salmincola ... 1
Sphyriidae ... 1, 2, 3, 12
Sphyrian lumpi
Tanypleuridae 1, 2
Thysanote pomacanthi 5, 12
ACKNOWLEDGMENTS

Preparation of the "Marine Flora and Fauna of the Northeastern United States" is being coordinated by the following Board:

Coordinating Editor: Melbourne R. Carriker, College of Marine Studies, University of Delaware, Lewes, DE 19958.

Wesley N. Tiffney, Department of Botany, Harvard University, Cambridge, Mass.

The Board established the format for the "Marine Flora and Fauna of the Northeastern United States," invites systematists to collaborate in the preparation of manuals, reviews manuscripts, and advises the Scientific Editor of the National Marine Fisheries Service.

All illustrations were made from the collections in the Division of Crustacea, National Museum of Natural History, Smithsonian Institution, Washington, D.C. Melbourne R. Carriker, Bruce C. Coull, Roger F. Cressey, Arthur G. Humes, and Zbigniew Kabata critically read the manuscript.

COORDINATING EDITOR'S COMMENTS

Publication of the "Marine Flora and Fauna of the Northeastern United States" is most timely in view of the growing universal emphasis on environmental work and the urgent need for more precise and complete identification of coastal organisms than has been available. It is mandatory, wherever possible, that organisms be identified accurately to species. Accurate scientific names unlock the great quantities of biological information stored in libraries, obviate duplication of research already done, and often make possible prediction of attributes of organisms that have been inadequately studied.

Ju-Shay Ho began his study of the systematics of the parasitic Copepoda in 1960 when he was a teaching assistant at the Department of Zoology, National Taiwan University, Taipei, Taiwan. In 1962 he went to Boston University to pursue graduate studies on the copepod parasites of marine animals. He joined the faculty of California State University, Long Beach, in 1970 where he has continued his research on parasitic Copepoda. His studies have resulted in more than 50 papers on the systematics of marine parasitic copepods, including a monographic revision of Chondracanthidae at the generic level. Currently he is working on a series of copepod parasites from the fishes of the Great Barrier Reef, Australia.

Preparation of this manual was supported in part by a grant from the Environmental Protection Agency to the Editorial Board of the "Marine Flora and Fauna of the Northeastern United States." Work on the "Marine Flora and Fauna of the Northeastern United States" by the Coordinating Editor is supported by the College of Marine Studies, University of Delaware.

