VIMS

Coastal Research

VIMS Journal Articles

The following list is based on a search of VIMS-authored research articles from Thomson Reuters' Web of Science© using the keyword search terms beach nourishment, dune, erosion, sand, shoreline, watershed, or wetland. The list is updated at least biannually.

  1. Xie, W.M., et al., 2018. Impacts of Human Modifications and Natural Variations on Short-Term Morphological Changes in Estuarine Tidal Flats. Estuaries and Coasts, 41(5): p. 1253-1267. 10.1007/s12237-017-0352-9
  2. Wigand, C., et al., 2018. Discontinuities in soil strength contribute to destabilization of nutrient-enriched creeks. Ecosphere, 9(8). ARTN e02329 10.1002/ecs2.2329
  3. Sherwood, C.R., et al., 2018. Cohesive and mixed sediment in the Regional Ocean Modeling System (ROMS v3.6) implemented in the Coupled Ocean-Atmosphere-Wave-Sediment Transport Modeling System (COAWST r1234). Geoscientific Model Development, 11(5): p. 1849-1871. 10.5194/gmd-11-1849-2018
  4. Seitz, R.D., et al., 2018. Human Influence at the Coast: Upland and Shoreline Stressors Affect Coastal Macrofauna and Are Mediated by Salinity. Estuaries and Coasts, 41: p. S114-S130. 10.1007/s12237-017-0347-6
  5. Schieder, N.W., D.C. Walters, and M.L. Kirwan, 2018. Massive Upland to Wetland Conversion Compensated for Historical Marsh Loss in Chesapeake Bay, USA. Estuaries and Coasts, 41(4): p. 940-951. 10.1007/s12237-017-0336-9
  6. Raff, J.L., et al., 2018. Insights into barrier-island stability derived from transgressive/regressive state changes of Parramore Island, Virginia. Marine Geology, 403: p. 1-19. 10.1016/j.margeo.2018.04.007
  7. Prosser, D.J., et al., 2018. Impacts of Coastal Land Use and Shoreline Armoring on Estuarine Ecosystems: an Introduction to a Special Issue. Estuaries and Coasts, 41: p. S2-S18. 10.1007/s12237-017-0331-1
  8. Patrick, C.J., et al., 2018. Land Use and Salinity Drive Changes in SAV Abundance and Community Composition. Estuaries and Coasts, 41: p. S85-S100. 10.1007/s12237-017-0250-1
  9. Moomaw, W.R., et al., 2018. Wetlands In a Changing Climate: Science, Policy and Management. Wetlands, 38(2): p. 183-205. 10.1007/s13157-018-1023-8
  10. Kornis, M.S., et al., 2018. Shoreline Hardening Affects Nekton Biomass, Size Structure, and Taxonomic Diversity in Nearshore Waters, with Responses Mediated by Functional Species Groups. Estuaries and Coasts, 41: p. S159-S179. 10.1007/s12237-017-0214-5
  11. Johnson, D.S., et al., 2018. Saltmarsh plants, but not fertilizer, facilitate invertebrate recolonization after an oil spill. Ecosphere, 9(1). ARTN e02082 10.1002/ecs2.2082
  12. Horton, B.P., et al., 2018. Predicting marsh vulnerability to sea-level rise using Holocene relative sea-level data. Nature Communications, 9. ARTN 2687 10.1038/s41467-018-05080-0
  13. Holmquist, J.R., et al., 2018. Accuracy and Precision of Tidal Wetland Soil Carbon Mapping in the Conterminous United States. Scientific Reports, 8. ARTN 9478 10.1038/s41598-018-26948-7
  14. French, K.L., et al., 2018. Millennial soil retention of terrestrial organic matter deposited in the Bengal Fan. Scientific Reports, 8. ARTN 11997 10.1038/s41598-018-30091-8
  15. Duc, L.V., et al., 2018. High growth potential and nitrogen removal performance of marine anammox bacteria in shrimp-aquaculture sediment. Chemosphere, 196: p. 69-77. 10.1016/j.chemosphere.2017.12.159
  16. Xie, W.M., et al., 2017. Application of terrestrial laser scanner on tidal flat morphology at a typhoon event timescale. Geomorphology, 292: p. 47-58. http://doi.org/10.1016/j.geomorph.2017.04.03
  17. van Belzen, J., et al., 2017. Vegetation recovery in tidal marshes reveals critical slowing down under increased inundation. Nature Communications, 8. ARTN 15811 http://doi.org/10.1038/ncomms15811
  18. Schepers, L., et al., 2017. Spatio-temporal development of vegetation die-off in a submerging coastal marsh. Limnology and Oceanography, 62(1): p. 137-150. http://doi.org/10.1002/lno.10381
  19. Krauss, K.W., et al., 2017. Created mangrove wetlands store belowground carbon and surface elevation change enables them to adjust to sea-level rise. Scientific Reports, 7. ARTN 1030 http://doi.org/10.1038/s41598-017-01224-2
  20. Kornis, M.S., et al., 2017. Linking the Abundance of Estuarine Fish and Crustaceans in Nearshore Waters to Shoreline Hardening and Land Cover. Estuaries and Coasts, 40(5): p. 1464-1486. http://doi.org/10.1007/s12237-017-0213-6
  21. Johnson, D.S. and R. Heard, 2017. Bottom-up control of parasites. Ecosphere, 8(10). ARTN e01885 http://doi.org/10.1002/ecs2.1885
  22. Hein, C.J., et al., 2017. Post-glacial climate forcing of surface processes in the Ganges-Brahmaputra river basin and implications for carbon sequestration. Earth and Planetary Science Letters, 478: p. 89-101. http://doi.org/10.1016/j.epsl.2017.08.013
  23. Ganju, N.K., et al., 2017. Spatially integrative metrics reveal hidden vulnerability of microtidal salt marshes. Nature Communications, 8. ARTN 14156 http://doi.org/10.1038/ncomms14156
  24. Bilkovic, D.M., et al., 2017. Mutualism between ribbed mussels and cordgrass enhances salt marsh nitrogen removal. Ecosphere, 8(4). ARTN e01795 http://doi.org/10.1002/ecs2.1795
  25. Zhu, L., et al., 2016. The influence of human activities on morphodynamics and alteration of sediment source and sink in the Changjiang Estuary. Geomorphology, 273: p. 52-62. http://doi.org/10.1016/j.geomorph.2016.07.025
  26. Xu, K.H., et al., 2016. Shelf sediment transport during hurricanes Katrina and Rita. Computers & Geosciences, 90: p. 24-39. http://doi.org/10.1016/j.cageo.2015.10.009
  27. Stoliker, D.L., et al., 2016. Hydrologic Controls on Nitrogen Cycling Processes and Functional Gene Abundance in Sediments of a Groundwater Flow-Through Lake. Environmental Science & Technology, 50(7): p. 3649-3657. http://doi.org/10.1021/acs.est.5b06155
  28. Kirwan, M.L., et al., 2016. Overestimation of marsh vulnerability to sea level rise. Nature Climate Change, 6(3): p. 253-260. http://doi.org/10.1038/Nclimate2909
  29. Hein, C.J., et al., 2016. Complex coastal change in response to autogenic basin infilling: An example from a sub-tropical Holocene strandplain. Sedimentology, 63(6): p. 1362-1395. http://doi.org/10.1111/sed.12265
  30. Bilkovic, D.M., et al., 2016. The Role of Living Shorelines as Estuarine Habitat Conservation Strategies. Coastal Management, 44(3): p. 161-174. http://doi.org/10.1080/08920753.2016.1160201
  31. Sutter, L.A., R.M. Chambers, and J.E. Perry, 2015. Seawater intrusion mediates species transition in low salinity, tidal marsh vegetation. Aquatic Botany, 122: p. 32-39. http://doi.org/10.1016/j.aquabot.2015.01.002
  32. Isdell, R.E., et al., 2015. Effects of terrestrial-aquatic connectivity on an estuarine turtle. Diversity and Distributions, 21(6): p. 643-653. http://doi.org/10.1111/ddi.12289
  33. Deberry, D.A. and J.E. Perry, 2015. Using the floristic quality concept to assess created and natural wetlands: Ecological and management implications. Ecological Indicators, 53: p. 247-257. http://doi.org/10.1016/j.ecolind.2015.02.003
  34. Colden, A.M. and R.N. Lipcius, 2015. Lethal and sublethal effects of sediment burial on the eastern oyster Crassostrea virginica. Marine Ecology Progress Series, 527: p. 105-117. http://doi.org/10.3354/meps11244
  35. Briggs, K.B., et al., 2015. Biogenic effects on cohesive sediment erodibility resulting from recurring seasonal hypoxia on the Louisiana shelf. Continental Shelf Research, 93: p. 17-26. http://doi.org/10.1016/j.csr.2014.11.005
  36. Yang, S.L., et al., 2014. Downstream sedimentary and geomorphic impacts of the Three Gorges Dam on the Yangtze River. Earth-Science Reviews, 138: p. 469-486. http://doi.org/10.1016/j.earscirev.2014.07.006
  37. Xu, K., et al., 2014. Seabed erodibility variations on the Louisiana continental shelf before and after the 2011 Mississippi River flood. Estuarine Coastal and Shelf Science, 149: p. 283-293. http://doi.org/10.1016/j.ecss.2014.09.002
  38. Xiao, Y. and M.A.M. Friedrichs, 2014. Using biogeochemical data assimilation to assess the relative skill of multiple ecosystem models in the Mid-Atlantic Bight: effects of increasing the complexity of the planktonic food web. Biogeosciences, 11(11): p. 3015-3030. http://doi.org/10.5194/bg-11-3015-2014
  39. Warner, J.C., et al., 2014. Inner-shelf circulation and sediment dynamics on a series of shoreface-connected ridges offshore of Fire Island, NY. Ocean Dynamics, 64(12): p. 1767-1781. http://doi.org/10.1007/s10236-014-0781-y
  40. Walters, D., et al., 2014. Interactions between barrier islands and backbarrier marshes affect island system response to sea level rise: Insights from a coupled model. Journal of Geophysical Research-Earth Surface, 119(9): p. 2013-2031. http://doi.org/10.1002/2014jf003091
  41. Varnell, L.M., 2014. Shoreline Energy and Sea Level Dynamics in Lower Chesapeake Bay: History and Patterns. Estuaries and Coasts, 37(2): p. 508-523. http://doi.org/10.1007/s12237-013-9672-6
  42. Roquemore, J.D., et al., 2014. Survival and growth of seven tree species from three stocktypes planted in created wetlands in Loudoun County, Virginia. Ecological Engineering, 64: p. 408-414. http://doi.org/10.1016/j.ecoleng.2014.01.001
  43. Lu, Y.H., et al., 2014. Effects of watershed land use on sources and nutritional value of particulate organic matter in temperate headwater streams. Aquatic Sciences, 76(3): p. 419-436. http://doi.org/10.1007/s00027-014-0344-9
  44. Lu, Y.H., et al., 2014. Effects of land use on sources and ages of inorganic and organic carbon in temperate headwater streams. Biogeochemistry, 119(1-3): p. 275-292. http://doi.org/10.1007/s10533-014-9965-2
  45. Lawless, A.S. and R.D. Seitz, 2014. Effects of shoreline stabilization and environmental variables on benthic infaunal communities in the Lynnhaven River System of Chesapeake Bay. Journal of Experimental Marine Biology and Ecology, 457: p. 41-50. http://doi.org/10.1016/j.jembe.2014.03.010
  46. Kirwan, M.L., G.R. Guntenspergen, and J.A. Langley, 2014. Temperature sensitivity of organic-matter decay in tidal marshes. Biogeosciences, 11(17): p. 4801-4808. http://doi.org/10.5194/bg-11-4801-2014
  47. Kalinoski, M., et al., 2014. Spectral sensitivity, luminous sensitivity, and temporal resolution of the visual systems in three sympatric temperate coastal shark species. Journal of Comparative Physiology a-Neuroethology Sensory Neural and Behavioral Physiology, 200(12): p. 997-1013. http://doi.org/10.1007/s00359-014-0950-y
  48. Goodbred, S.L., et al., 2014. Piecing together the Ganges-Brahmaputra-Meghna River delta: Use of sediment provenance to reconstruct the history and interaction of multiple fluvial systems during Holocene delta evolution. Geological Society of America Bulletin, 126(11-12): p. 1495-1510. http://doi.org/10.1130/B30965.1
  49. Rodriguez-Calderon, C. and S. A. Kuehl 2013. Spatial and temporal patterns in erosion and deposition in the York River, Chesapeake Bay, VA. Estuarine Coastal and Shelf Science 117: 148-158. doi 10.1016/J.Ecss.2012.11.004
  50. Kirwan, M. L. and J. P. Megonigal 2013. Tidal wetland stability in the face of human impacts and sea-level rise. Nature 504(7478): 53-60. doi 10.1038/Nature12856
  51. Beck, A. J. and M. A. Cochran 2013. Controls on solid-solution partitioning of radium in saturated marine sands. Marine Chemistry 156: 38-48. doi 10.1016/J.Marchem.2013.01.008
  52. Xing, F., Y. P. Wang, et al. 2012. Tidal hydrodynamics and fine-grained sediment transport on the radial sand ridge system in the southern Yellow Sea. Marine Geology 291: 192-210. doi 10.1016/J.Margeo.2011.06.006
  53. DeBerry, D. A. and J. E. Perry 2012. Vegetation dynamics across a chronosequence of created wetland sites in Virginia, USA. Wetlands Ecology and Management 20(6): 521-537. doi 10.1007/S11273-012-9273-3
  54. Bilkovic, D. M., M. R. Mitchell, et al. 2012. Transitional Wetland Faunal Community Characterization and Response to Precipitation-Driven Salinity Fluctuations. Wetlands 32(3): 425-437. doi 10.1007/S13157-012-0276-X
  55. Yang, S. L., J. D. Milliman, et al. 2011. 50,000 dams later: Erosion of the Yangtze River and its delta. Global and Planetary Change 75(1-2): 14-20. doi 10.1016/j.gloplacha.2010.09.006
  56. Wozniak, A. S., J. E. Bauer, et al. 2011. Fossil and contemporary aerosol particulate organic carbon in the eastern United States: Implications for deposition and inputs to watersheds. Global Biogeochemical Cycles 25. doi 10.1029/2010GB003855
  57. Brooks, R. P., M. M. Brinson, et al. 2011. Proposed Hydrogeomorphic Classification for Wetlands of the Mid-Atlantic Region, USA. Wetlands 31(2): 207-219. doi 10.1007/S13157-011-0158-7
  58. Sobocinski, K. L., J. R. Cordell, et al. 2010. Effects of Shoreline Modifications on Supratidal Macroinvertebrate Fauna on Puget Sound, Washington Beaches. Estuaries and Coasts 33(3): 699-711. doi 10.1007/S12237-009-9262-9
  59. Atkinson, R. B., J. E. Perry, et al. 2010. Primary Productivity in 20-year Old Created Wetlands in Southwestern Virginia. Wetlands 30(2): 200-210. doi 10.1007/S13157-010-0033-Y
  60. Stanhope, J. W., I. C. Anderson, et al. 2009. Base Flow Nutrient Discharges from Lower Delmarva Peninsula Watersheds of Virginia, USA. Journal of Environmental Quality 38(5): 2070-2083. doi 10.2134/Jeq2008.0358
  61. Park, J. Y., P. T. Gayes, et al. 2009. Monitoring Beach Renourishment along the Sediment-Starved Shoreline of Grand Strand, South Carolina. Journal of Coastal Research 25(2): 336-349. doi 10.2112/07-0929.1
  62. Finkl, C. W. and C. H. Hobbs 2009. Mining Sand on the Continental Shelf of the Atlantic and Gulf Coasts of the US. Marine Georesources & Geotechnology 27(3): 230-253. doi 10.1080/10641190902906067
  63. Brooks, R., M. McKenney-Easterling, et al. 2009. A Stream-Wetland-Riparian (SWR) index for assessing condition of aquatic ecosystems in small watersheds along the Atlantic slope of the eastern US. Environmental Monitoring and Assessment 150(1-4): 101-117. doi 10.1007/S10661-008-0673-Z
  64. Maa, J. P. Y. 2008. Sediment Erosion Characteristics in the Anacostia River. Journal of Hydraulic Engineering 134(8): 1102-1109.
  65. Day, J. W., R. R. Christian, et al. 2008. Consequences of climate change on the ecogeomorphology of coastal wetlands. Estuaries and Coasts 31(3): 477-491. doi 10.1007/S12237-008-9047-6
  66. Chambers, R. M., K. J. Havens, et al. 2008. Common Reed Phragmites Australis Occurrence and Adjacent Land Use Along Estuarine Shoreline in Chesapeake Bay. Wetlands 28(4): 1097-1103.
  67. Trembanis, A. C., C. T. Friedrichs, et al. 2007. Predicting seabed burial of cylinders by wave-induced scour: Application to the sandy inner shelf off Florida and Massachusetts. IEEE Journal of Oceanic Engineering 32(1): 167-183.
  68. Park, J.-Y. and J. T. Wells 2007. Spit Growth and Downdrift Erosion: Results of Longshore Transport Modeling and Morphologic Analysis at the Cape Lookout Cuspate Foreland. Journal of Coastal Research 23(3): 553-568.
  69. McNinch, J. E. 2007. Bar and swash imaging radar (BASIR): A mobile X-band radar designed for mapping nearshore sand bars and swash-defined shorelines over large distances. Journal of Coastal Research 23(1): 59-74.
  70. Bailey, D. E., J. E. Perry, et al. 2007. Vegetation dynamics in response to organic matter loading rates in a created freshwater wetland in southeastern Virginia. Wetlands 27(4): 936-950.
  71. Seitz, R. D., R. N. Lipcius, et al. 2006. Influence of shallow-water habitats and shoreline development on abundance, biomass, and diversity of benthic prey and predators in Chesapeake Bay. Marine Ecology-Progress Series 326: 11-27.
  72. Schupp, C. A., J. E. McNinch, et al. 2006. Nearshore shore-oblique bars, gravel outcrops, and their correlation to shoreline change. Marine Geology 233(1-4): 63-79.
  73. Nichols, J. D., J. E. Perry, et al. 2006. Using a floristic quality assessment technique to evaluate plant community integrity of forested wetlands in Southeastern Virginia. Natural Areas Journal 26(4): 360-369.
  74. Miselis, J. L. and J. E. McNinch 2006. Calculating shoreline erosion potential using nearshore stratigraphy and sediment volume: Outer Banks, North Carolina. Journal of Geophysical Research-Earth Surface 111(F2): -.
  75. Kimbrough, K. L. and R. M. Dickhut 2006. Assessment of polycyclic aromatic hydrocarbon input to urban wetlands in relation to adjacent land use. Marine Pollution Bulletin 52(11): 1355-1363.
  76. Chu, Z. X., X. G. Sun, et al. 2006. Changing pattern of accretion/erosion of the modem Yellow River (Huanghe) subaerial delta, China: Based on remote sensing images. Marine Geology 227(1-2): 13-30.
  77. Browder, A. G. and J. E. McNinch 2006. Linking framework geology and nearshore morphology: Correlation of paleo-channels with shore-oblique sandbars and gravel outcrops. Marine Geology 231(1-4): 141-162.
  78. Varnell, L. M. and C. S. Hardaway 2005. A risk assessment approach to management of estuarine dunefields. Ocean & Coastal Management 48(9-10): 767-781.
  79. Elmore, P. A., M. D. Richardson, et al. 2005. Mine burial by scour in shallow seas: Prediction and experiments - A model for predicting scour shows promise toward forecasting mine burial in sandy bottoms. Sea Technology 46(3): 10-+.
  80. Conaway, C. A. and J. T. Wells 2005. Aeolian dynamics along scraped shorelines, Bogue Banks, North Carolina. Journal of Coastal Research 21(2): 242-254.
  81. McNinch, J. E. 2004. Geologic control in the nearshore: shore-oblique sandbars and shoreline erosional hotspots, Mid-Atlantic Bight, USA. Marine Geology 211(1-2): 121-141.
  82. Maa, J. P. Y., C. H. Hobbs, et al. 2004. Potential impacts of sand mining offshore of Maryland and Delaware: Part I - Impacts on physical oceanographic processes. Journal of Coastal Research 20(1): 44-60.
  83. Howe, J. A., T. M. Shimmield, et al. 2004. Deep-water sedimentary environments of the northwestern Weddell Sea and South Sandwich Islands, Antarctica. Deep-Sea Research Part Ii-Topical Studies in Oceanography 51(14-16): 1489-1514.
  84. Holland, A. F., D. M. Sanger, et al. 2004. Linkages between tidal creek ecosystems and the landscape and demographic attributes of their watersheds. Journal of Experimental Marine Biology and Ecology 298(2): 151-178.
  85. Havens, K. J. 2004. A comparison of C-caroliniana, Q-michauxii, Q-pagoda, and T-distichum seedlings of upland and wetland stock for use in created or restored forested wetlands. Ecological Engineering 23(4-5): 341-349. doi 10.1016/J.Ecoleng.2004.11.007
  86. Havens, K. J. 2004. A comparison of C. caroliniana, Q. michauxii, Q. pagoda, and T. distichum seedlings of upland and wetland stock for use in created or restored forested wetlands. Ecological Engineering 23(4-5): 341-349.
  87. Green, M. O., C. E. Vincent, et al. 2004. Suspension of coarse and fine sand on a wave-dominated shoreface, with implications for the development of rippled scour depressions. Continental Shelf Research 24(3): 317-335.
  88. Diaz, R. J., G. R. Cutter, et al. 2004. Potential impacts of sand mining offshore of Maryland and Delaware: Part 2 - Biological considerations. Journal of Coastal Research 20(1): 61-69.
  89. DeBerry, D. A. and J. E. Perry 2004. Primary succession in a created freshwater wetland. Castanea 69(3): 185-193.
  90. Varnell, L. M., D. A. Evans, et al. 2003. A geomorphological model of intertidal cove marshes with application to wetlands management. Ecological Engineering 19(5): 339-347.
  91. Havens, K. J., H. Berquist, et al. 2003. Common reed grass, Phragmites australis, expansion into constructed wetlands: Are we mortgaging our wetland future? Estuaries 26(2B): 417-422.
  92. Robinson, M. A. and W. G. Reay 2002. Ground water flow analysis of a Mid-Atlantic outer coastal plain watershed, Virginia, USA. Ground Water 40(2): 123-131.
  93. Anderson, B. A., M. A. Unger, et al. 2002. Fate of tributyltin in a created tidal wetland. Environmental Toxicology and Chemistry 21(6): 1176-1183.
  94. Tobias, C. R., J. W. Harvey, et al. 2001. Quantifying groundwater discharge through fringing wetlands to estuaries: Seasonal variability, methods comparison, and implications for wetland-estuary exchange. Limnology and Oceanography 46(3): 604-615.
  95. Sanford, L. P. and J. P. Y. Maa 2001. A unified erosion formulation for fine sediments. Marine Geology 179(1-2): 9-23.
  96. Maa, J. P. Y., C. H. Hobbs, et al. 2001. A criterion for determining the impact on shorelines caused by altering wave transformation. Journal of Coastal Research 17(1): 107-113.
  97. Liu, W. C., M. H. Hsu, et al. 2001. A modeling study of water quality in main channel and estuarine wetland. Journal of Environmental Science and Health Part a-Toxic/Hazardous Substances & Environmental Engineering 36(5): 641-660.
  98. Lerberg, S. B., A. F. Holland, et al. 2000. Responses of tidal creek macrobenthic communities to the effects of watershed development. Estuaries 23(6): 838-853.
  99. Hobbs, C. H. and J. P. Y. Maa 2000. Reply to Smith, AWS, 1999, Journal of Coastal Research, 15(4), 1178, Discussion of: Maa, JP-Y. and Hobbs, CH, III, 1998, Physical impact of waves on adjacent coasts resulting from dredging at Sandbridge Shoal, Virginia. Journal of Coastal Research, 14(2), 525-536. Journal of Coastal Research 16(2): 496-497.
  100. Hall, L. W., M. C. Scott, et al. 2000. A probabilistic ecological risk assessment of tributyltin in surface waters of the Chesapeake Bay watershed. Human and Ecological Risk Assessment 6(1): 141-179.
  101. Rhodes, M. W. and J. Kator 1999. Sorbitol-fermenting bifidobacteria as indicators of diffuse human faecal pollution in estuarine watersheds. Journal of Applied Microbiology 87(4): 528-535.
  102. Hobbs, C. H., C. S. Hardaway, et al. 1999. Submarine sand resources, southeastern Virginia-contributions from year 9 and year 10 of Virginia's Continental Margins Program. Marine Georesources & Geotechnology 17(2-3): 155-163.
  103. MacIntyre, W. G., C. P. Antworth, et al. 1998. Heterogeneity of sorption and transport-related properties in a sand-gravel aquifer at Columbus, Mississippi. Journal of Contaminant Hydrology 31(3-4): 257-274.
  104. Maa, J. P. Y. and C. H. Hobbs 1998. Physical impact of waves on adjacent coasts resulting from dredging at Sandbridge Shoal, Virginia. Journal of Coastal Research 14(2): 525-536.
  105. Hsu, M. H., A. Y. Kuo, et al. 1998. Modeling estuarine hydrodynamics and salinity for wetland restoration. Journal of Environmental Science and Health Part a-Toxic/Hazardous Substances & Environmental Engineering 33(5): 891-921.
  106. Greiner, M. and C. Hershner 1998. Analysis of wetland total phosphorus retention and watershed structure. Wetlands 18(1): 142-149.
  107. Havens, K. J., W. I. Priest, et al. 1997. Investigation and long-term monitoring of Phragmites australis within Virginia's constructed wetland sites. Environmental Management 21(4): 599-605.
  108. Li, M. Z., L. D. Wright, et al. 1996. Predicting ripple roughness and sand resuspension under combined flows in a shoreface environment. Marine Geology 130(1-2): 139-161.
  109. Hudson, D. A. and J. D. Shields 1994. Hematodinium-Australis N-Sp, a Parasitic Dinoflagellate of the Sand Crab Portunus-Pelagicus from Moreton Bay, Australia. Diseases of Aquatic Organisms 19(2): 109-119.
  110. Hudson, D. A. and J. D. Shields 1994. Hematodinium australis N-Sp, a Parasitic Dinoflagellate of the Sand Crab Portunus pelagicus from Moreton Bay, Australia. Diseases of Aquatic Organisms 19(2): 109-119.
  111. Hobbs, C. H. 1993. Sand Mining in Lower Chesapeake Bay - a Progress Report. Marine Georesources & Geotechnology 11(4): 347-352.
  112. Rhodes, M. W. and H. Kator 1992. Use of Salmonella-Typhimurium Wg49 to Enumerate Male-Specific Coliphages in an Estuary and a Watershed Subject to Nonpoint Pollution - Reply. Water Research 26(5): 705-705.
  113. Rhodes, M. W. and H. Kator 1992. Reply: Use of Salmonella-Typhimurium Wg49 to Enumerate Male-Specific Coliphages in an Estuary and a Watershed Subject to Nonpoint Pollution. Water Research 26(5): 705-705.
  114. Rhodes, M. W. and H. I. Kator 1991. Use of Salmonella-Typhimurium Wg49 to Enumerate Male-Specific Coliphages in an Estuary and Watershed Subject to Nonpoint Pollution. Water Research 25(11): 1315-1323.
  115. Olmi, E. J. and R. N. Lipcius 1991. Predation on Postlarvae of the Blue-Crab Callinectes-Sapidus Rathbun by Sand Shrimp Crangon-Septemspinosa Say and Grass Shrimp Palaemonetes-Pugio Holthuis. Journal of Experimental Marine Biology and Ecology 151(2): 169-183.
  116. Olmi, E. J. and R. N. Lipcius 1991. Predation on Postlarvae of the Blue Crab Callinectes sapidus Rathbun by Sand Shrimp Crangon septemspinosa Say and Grass Shrimp Palaemonetes pugio Holthuis. Journal of Experimental Marine Biology and Ecology 151(2): 169-183.
  117. Hobbs, C. H. 1991. Marine Mineral-Resources of the United-States Middle and South-Atlantic Coasts. Marine Mining 10(3): 215-230.
  118. Boon, J. D. and C. R. Berquist 1991. Evaluation of Sediment Dynamics and the Mobility of Heavy Minerals on a Linear Sand Shoal. Journal of Coastal Research 7(4): 989-1002.
  119. Hobbs, C. H. and S. M. Kimball 1990. Sand Resources of Lower Chesapeake Bay. Marine Mining 9(4): 429-440.
  120. Milliman, J. D. 1988. Correlation of 3.5-Khz Acoustic Penetration and Deposition-Erosion in the Argentine Basin - a Note. Deep-Sea Research Part a-Oceanographic Research Papers 35(6): 919-&.
  121. Milliman, J. D., Y. S. Qin, et al. 1987. Mans Influence on the Erosion and Transport of Sediment by Asian Rivers - the Yellow-River (Huanghe) Example. Journal of Geology 95(6): 751-762.
  122. Maa, P. Y. and A. J. Mehta 1987. Mud Erosion by Waves - a Laboratory Study. Continental Shelf Research 7(11-12): 1269-1284.
  123. Green, M. O. 1986. Side-Scan Sonar Mosaic of a Sand Ridge Field - Southern Mid-Atlantic Bight. Geo-Marine Letters 6(1): 35-40.
  124. Boon, J. D., A. A. Frisch, et al. 1983. Sand Transport Pathways in the Entrance to Chesapeake Bay - Evidence from Fourier Grain-Shape Analysis. Estuaries 6(3): 317-317.
  125. Alongi, D. M., D. F. Boesch, et al. 1983. Colonization of Meiobenthos in Oil-Contaminated Subtidal Sands in the Lower Chesapeake Bay. Marine Biology 72(3): 325-335.
  126. Pierce, B. A. 1982. Adsorption and Uptake of Radiophosphate by Sandy Estuarine Sediments. Ocean Science and Engineering 7(4): 519-539.
  127. Hobbs, C. H., R. J. Byrne, et al. 1981. Shoreline Erosion - a Problem in Environmental-Management. Coastal Zone Management Journal 9(1): 89-105.
  128. Rosen, P. S. 1980. Erosion Susceptibility of the Virginia Chesapeake Bay Shoreline. Marine Geology 34(1-2): 45-59.
  129. Kerns, W. R., R. J. Byrne, et al. 1980. An Economic-Analysis Strategy for Management of Shoreline Erosion. Coastal Zone Management Journal 8(2): 165-184.
  130. Hobbs, C. H. 1979. Landward Migration of Barrier Island Sands under Stable Sea-Level Conditions - Plum Island, Massachusetts. Journal of Sedimentary Petrology 49(1): 330-331.
  131. Serafy, D. K. 1978. Age, Growth, Reproduction and Sediment Preference in Northern Sand Dollar, Echinarachnius-Parma, on Middle Atlantic Shelf (Echinodermata-Echinoidea). American Zoologist 18(3): 664-664.
  132. Jones, J. C. and M. P. Lynch 1978. Local Environmental Management - Can It Work - Case-Study of Virginia Wetlands Act. Coastal Zone Management Journal 4(1-2): 127-150.
  133. Rosen, P. S. 1977. Nearshore Evidence in Support of Bruun Rule on Shore Erosion - Discussion. Journal of Geology 85(4): 491-492.
  134. Rosen, P. S. 1977. Increasing Shoreline Erosion Rates with Decreasing Tidal Range in Virginia Chesapeake Bay. Chesapeake Science 18(4): 383-386.
  135. Gutman, A., H. Hennigar, et al. 1977. Dune Dynamics in Coastal Zone Past, Present, and Future. AAPG Bulletin-American Association of Petroleum Geologists 61(5): 791-791.
  136. Goldsmith, V., A. Gutman, et al. 1977. Coastal-Dune Geomorphology and Classification. AAPG Bulletin-American Association of Petroleum Geologists 61(5): 789-789.
  137. Milliman, J. D. 1976. Miniacina-Miniacea - Modern Foraminiferal Sands on Outer Moroccan Shelf. Sedimentology 23(3): 415-419.
  138. Goldsmit.V 1973. Internal Geometry and Origin of Vegetated Coastal Sand Dunes. Journal of Sedimentary Petrology 43(4): 1128-1142.
  139. Hopkins, S. H. and J. D. Andrews 1970. Rangia cuneata on the East Coast: Thousand Mile Range Extension, or Resurgence? Science 167(3919): 868-869. 10.1126/science.167.3919.868