SEROLOGICAL AFFINITIES OF THE OYSTER PATHOGEN PERKINSUS MARINUS (APICOMPLEXA) WITH SOME DINOFLAGELLES (DINOPHYCEAE)

DAVID BUSHEK,* CHRISTOPHER F. DUNGAN* and ALAN J. LEWITUS*

*University of South Carolina, Belle W. Baruch Institute for Marine Biology and Coastal Research, Baruch Marine Field Laboratory, Georgetown, South Carolina 29442, USA, and

*Maryland Department of Natural Resources, Cooperative Oxford Laboratory, Oxford, Maryland 21654, USA, and

*South Carolina Department of Natural Resources, Marine Resources Institute, Charleston, South Carolina 29442–2559, USA

ABSTRACT. The protozoan oyster pathogen Perkinsus marinus is classified in the phylum Apicomplexa, although molecular-genetic and ultrastructural evidence increasingly concur on its closer phylogenetic relationship with the dinoflagellates. To test for evidence of serological equivalences common to P. marinus and dinoflagellates, we probed 19 free-living and 8 parasitic dinoflagellates, or dinoflagellate-like species for cross-reactivity with polyclonal antibodies to P. marinus. Three of 19 free-living dinoflagellates (16%), and 7 of 8 parasitic dinoflagellates (88%) were labeled by anti-P. marinus antibodies. In reciprocal immunoassays using polyclonal antibodies to the Hematodinium sp. dinoflagellate parasite of Norway lobsters, Nephrops norvegicus, P. marinus and the same 7 parasitic dinoflagellates labeled by anti-P. marinus antibodies, were again labeled. The dinoflagellate-like parasite of prawns Pandanus platyceros was not labeled by either antibody reagent. These reciprocal results confirm the presence of shared antibody-binding epitopes on cells of P. marinus and the parasitic dinoflagellates suggests a closer phylogenetic link to the syndinean dinoflagellate lineage. The consistent failure of the dinoflagellate-like prawn parasite to bind either antibody reagent shows that this parasite is serologically distinct from both P. marinus and Hematodinium species parasitic dinoflagellates.

Key Words. Antibody cross-reaction, dermo, epitope sharing, Hematodinium, immunoassay, protozoan phylogeny, oyster disease, parasitic dinoflagellates, spot prawn, Syndinidae.

Destructive impacts on aquatic habitats and living aquatic resources by toxic algae, parasitic dinoflagellates, and pathogenic protozoans in estuarine environments have been increasingly recognized, yet the taxonomic status of some identified agents remains controversial, and objective methods for their rapid identification unavailable. Development of polyclonal antibodies to the protozoan oyster pathogen Perkinsus marinus (Dungan and Roberson 1993) improved detection of this pathogen in host tissues and environmental samples, and provided a novel tool for testing long-standing hypotheses on the P. marinus life cycle, oyster disease transmission, and disease pathogenesis. Because Perkinsus karlssoni is no longer considered a valid Perkinsus species (Goggin et al. 1996), these polyclonal anti-P. marinus antibodies are now known to be broadly specific for all described, and most undescribed, Perkinsus-species mollusc parasites (Blackburn, Bower, and Meyer 1998; Dungan and Roberson 1993; Maeno, Yoshinaga, and Nakajima 1999; Dungan et al. 2002), but not for other protozoan pathogens of fish and shellfish.

Perkinsus marinus is currently classified as an apicomplexan based on zoosporic apical complex ultrastructures, including an atypical conoid apparatus (Levine 1978). However, recent analyses of P. marinus RNA and actin gene nucleotide sequences (Fong et al. 1994; Goggin and Barker 1993; Reee et al. 1997; Siddall et al. 1997) and morphological attributes (Perkins 1996; Siddall et al. 1997; Sunila, Hamilton, and Dungan 2001; Vivier 1982) have challenged inclusion of Perkinsus species in the Apicomplexa. Several independent analyses that have increasingly indicated that the strongest phylogenetic affinities of Perkinsus species lie with dinoflagellate taxa (Siddall et al. 1997; Wolters 1991), have inspired Cavalier-Smith (1998) to propose erection of the phylum Dinozoaa to house proposed subphyla Dinoflagellata and Protalveolata (Perkins et al.) together. Toward a similar taxonomic objective, Norén, Moestrup, and Rehnstam-Holm (1999) proposed separate phylum status for both the Perkinszoa and the Dinoflagellata, within their common alveolate clade.

To test for phenotypic evidence supporting or refuting phylogenetic affinities between Perkinsus species and the dinoflagellates suggested by nucleotide sequence homology data, and to localize possible shared antibody-binding epitopes, we probed a variety of free-living and parasitic dinoflagellate cells with polyclonal rabbit anti-P. marinus antibodies (Dungan and Roberson 1993). Upon the unexpected detection of such cross-reactivity, especially among the parasitic dinoflagellates, we also tested the parasitic dinoflagellates and P. marinus for reciprocal cross-reactivity with polyclonal rabbit antibodies raised against a Hematodinium sp. dinoflagellate parasite of Norway lobsters, Nephrops norvegicus (Field and Appleton 1996). We report here the results of those experiments.

MATERIALS AND METHODS

Viable and formaldehyde-fixed suspensions of free-living dinoflagellates were obtained from seven sources (Table 1). Viable populations were propagated in vitro and fixed for 1 h with 4% (w/v) buffered formaldehyde or 2% (w/v) paraformaldehyde, diluted in culture-medium seawater. Fixed cells were immobilized on track-etched, 1-μm pore-size, black polycarbonate membranes clamped in 13-mm swinnex filter housings, and fluorescence-immunostained by sequential, unidirectional passage of immunoassay reagents through the sample membranes, as described (Dungan and Roberson 1993). Membrane-immobilized cells were washed with 0.15 M phosphate-buffered saline (PBS) containing 0.05% (v/v) Tween-20 (PBST), and incubated in blocking buffer for 30 min. Blocking buffer was PBST containing 2% (w/v) bovine serum albumin (BSA) and 0.2% (v/v) normal goat serum. Sample cells were then sequentially exposed to a 10-3 dilution (~10 μg IgG ml-1) of the rabbit anti-P. marinus antiserum of Dungan and Roberson (1993) for 30 min, goat anti-rabbit IgG-FITC conjugate (1 μg IgG ml-1) for 30 min, and 0.5% (w/v) Evan’s blue counterstain. Antibody reagents were diluted in serum diletuent (PBST + 1% BSA). Samples were washed with PBST between immunoassay reagent incubations, and immunostained membranes were mounted in glycerol mounting medium pH 9, for examination by epifluorescence microscopy under 480-nm blue light excitation.

Histological samples of parasitic dinoflagellates infecting a variety of hosts were obtained from cooperating colleagues worldwide (Table 2). Histological samples were sectioned and immunostained as described (Dungan and Roberson 1993), with
the following differences. Dewaxed and rehydrated sections were incubated for 1 h in blocking buffer. Primary antibodies were protein A-affinity purified IgG from either normal rabbit serum (negative control normal IgG) or from the anti-P. marinus antisera of Dungan and Roberson (1993), both incubated at 10 μg IgG ml⁻¹ for 1 h. Secondary antibodies were affinity-purified, FITC-conjugated goat anti-rabbit IgG, which were incubated with sections for 1 h at 1 μg IgG ml⁻¹. Other reagents were identical to those employed for membrane-immobilized free-living cells.

Formalin-fixed P. marinus hypnospores from infected oyster tissues, which were enlarged in Ray’s fluid thioglycollate medium (RFTM) and isolated after host tissue hydrolysis (Bushek, Ford, and Allen 1994), were immobilized on membranes as positive controls for cytological immunoassays of suspended cells. Sections of P. marinus-infected Crassostrea virginica oyster tissues were used as positive controls for histological immunoassays performed with anti-P. marinus antibodies. Replicate preparations of each tested sample omitted the primary antibody, or substituted normal rabbit IgG, to control for possible non-specific binding of either rabbit primary antibodies or FITC-conjugated secondary antibodies. Autofluorescence control replicates of each tested sample were not exposed to any antibodies, but were blocked, counterstained, and analyzed for autofluorescence under blue light excitation. Positive immunoassay results, including sites of antibody labeling, were recorded only for immunofluorescence signals detected in samples stained with both primary and secondary antibodies, but which were absent from autofluorescence and non-specific antibody binding control replicates.

Similar histological immunoassay methods were used to stain P. marinus-infected oyster tissues, and fish and crustacean tissues infected by dinoflagellate, or dinoflagellate-like, parasites, using the anti-Hematodinium sp. antibodies of Field and Appleton (1996). This rabbit antiserum, raised against a lysate from in vitro propagated Hematodinium sp. vegetative cells, was diluted 1:500 in serum diluent, to an estimated concentration of 10 μg IgG ml⁻¹. Positive control sections were from Hematodinium sp.-infected N. norvegicus tissues. Otherwise, immunoassays were identical to those performed with anti-P. marinus antibodies.

RESULTS

The rabbit polyclonal antibodies to P. marinus used in this study label all described, and several undescribed, Perkinsus-species mollusc parasites (Blackbourn, Bower, and Meyer 1998; Dungan and Roberson 1993; Maeno, Yoshinaga, and Nakajima 1999; Dungan et al. 2002). Using the methods described here for histological immunoassays, these antibodies were previously shown not to label the protistan pathogens of finfish and shellfish, Dermocystidium salmonis, Haplosporidium nelsoni, and a Dermocystidium-like systemic salmon pathogen (Dungan and Roberson 1993). We have subsequently determined that these antibodies are also unreactive with the protists Labyrinthuloides halotidis (Bower 1987) and the undescribed

Table 1. Antibody binding by free-living dinoflagellates assayed with anti-Perkinsus marinus antibodies.

<table>
<thead>
<tr>
<th>Dinoflagellate species</th>
<th>Isolate code</th>
<th>Isolate source</th>
<th>Antibody binding</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gymnodinium breve</td>
<td>GB, Willon</td>
<td>c</td>
<td></td>
</tr>
<tr>
<td>Gymnodinium brevoral</td>
<td>GB, Willon</td>
<td>d</td>
<td></td>
</tr>
<tr>
<td>Gymnodinium catenatum</td>
<td>GB, Willon</td>
<td>d</td>
<td></td>
</tr>
<tr>
<td>Gyrodinium mikimotoi</td>
<td>CCMP414</td>
<td>b</td>
<td>+</td>
</tr>
<tr>
<td>Gyrodinium galatheum</td>
<td>CCMP430</td>
<td>b</td>
<td></td>
</tr>
<tr>
<td>Lingulodinium polyedra</td>
<td>CCMP416</td>
<td>b</td>
<td>+</td>
</tr>
<tr>
<td>Prorocentrum minimum</td>
<td>CCMP407</td>
<td>b</td>
<td></td>
</tr>
<tr>
<td>Procentrum minimum</td>
<td>CCMP698</td>
<td>b</td>
<td></td>
</tr>
<tr>
<td>Procentrum minimum</td>
<td>PROR6 17-2</td>
<td>e</td>
<td></td>
</tr>
<tr>
<td>Procentrum minimum</td>
<td>P. min. 2A</td>
<td>e</td>
<td></td>
</tr>
<tr>
<td>Ceratium fusus</td>
<td>CCMP1758</td>
<td>b</td>
<td></td>
</tr>
<tr>
<td>Gyrodinium uncatenatum</td>
<td>CCMP1310</td>
<td>b</td>
<td>+</td>
</tr>
<tr>
<td>Gyrodinium sp. Kofoi & Swezey</td>
<td>G. est.</td>
<td>e</td>
<td></td>
</tr>
<tr>
<td>Heterocapsa pygmaea</td>
<td>2421</td>
<td>f</td>
<td></td>
</tr>
<tr>
<td>Peridinium foliaceum</td>
<td>1688</td>
<td>f</td>
<td></td>
</tr>
<tr>
<td>Symbiodinium sp. Freudenthal</td>
<td>CCMP832</td>
<td>b</td>
<td></td>
</tr>
<tr>
<td>Oxyrrhis marina</td>
<td>1974</td>
<td>f</td>
<td></td>
</tr>
</tbody>
</table>

Isolate Sources: a. G. Doucette, NOAA/NOS, Charleston, SC, USA; b. Provasoli-Guillard Center for Culture of Marine Phytoplankton, West Boothbay Harbor, ME, USA; c. E. Van Dolah, NOAA/NOS, Charleston, SC, USA; d. P. Tester, NOAA/NMFS, Beaufort, NC, USA; e. A. Lewitus, Belle W. Baruch IMBCR, University of South Carolina, Georgetown, SC, USA; f. The Culture Collection of Algae at the University of Texas, Austin, TX, USA.
Twenty-eight strains of free-living dinoflagellates, representing 19 phototrophic, heterotrophic, toxic, or non-toxic species, were tested for labeling by anti-*P. marinus* antibodies (Table 1). Three planktontic photrotrophs (16% of tested species) showed immunofluorescence signal intensities similar to positive control *P. marinus* hypnospores. Both cell walls/membranes and feeding veils of *Gymnodinium catenatum* and *Gyrodinium uncatenum* bound anti-*P. marinus* antibodies (Fig. 1, 2). Cell walls or membranes of *Gyrodinium galatheanum* were stained, as were cytoplasmic epitopes of *G. uncatenum*. Nuclear immunostaining in free-living suspended dinoflagellate cells was never observed. Sixteen species (84%) of free-living dinoflagellates failed to bind anti-*P. marinus* antibodies, indicating that *P. marinus*-like epitopes labeled in immunopositive species are neither broadly conserved nor generally expressed by free-living dinoflagellates.

Seven of eight (88%) tested dinoflagellate, or dinoflagellate-like parasites of marine crustacea and fish were labeled by anti-*P. marinus* antibodies (Table 2), and intracellular locations of labeled epitopes varied between parasites. Like anti-*P. marinus* antibody labeling in cognate *P. marinus* cells (Fig. 3), a *Hematodinium* sp. infecting Alaska tanner crabs *Chionoecetes bairdi* (Meyers et al. 1987) showed strong labeling of cell wall, cytoplasmic and nuclear epitopes. Parasite cell wall and cytoplasmic epitopes, but not nuclear epitopes, were labeled in a *Hematodinium* sp. infecting Scottish Norway lobsters *N. norvegicus* (Field et al. 1992) (Fig. 5). Another *Hematodinium* sp. infecting Chesapeake Bay blue crabs *Callinectes sapidus* (Merrick 1994; Newman and Johnson 1975) showed strong labeling of both cytoplasmic and nuclear epitopes. The plasmalemma, nuclear membrane, and nucleoplasm were labeled in *Hematodinium australis* infecting Australian sand crabs *Portunus pelagicus* (Hudson and Shields 1994). Nuclear and cytoplasmic epitopes were labeled in a *Hematodinium* sp. parasite of velvet swimming crabs *Necora puber* from France (Wilhelm and Mialhe 1996). Nuclear, cell wall, and cytoplasmic epitopes were labeled in a *Hematodinium* sp. infecting an unidentified gammaridean amphipod from Maryland coastal bays (Johnson 1986). In *Amyloodinium ocellatum* ectoparasites infesting gills in Gulf of Mexico red drum *Sciaenops ocellatus* (Brown and Hovasse 1946; Nigrelli 1936), cell walls, reticular cytoplasm, nuclear membranes, and non-chromosomal nucleoplasm were labeled. Repeated efforts to immunostain a dinoflagellate-like parasite in histological samples of infected spot prawns *P. platyceros* from both southeast Alaska (Meyers, Lightner, and Redman 1994) and British Colombia (Bower, McGladdery, and Price 1994), consistently failed.

Tests for reciprocal immuno-staining by anti-*Hematodinium* sp. rabbit antiserum were performed only on histological sections from *P. marinus*-infected oysters and from dinoflagellate-infected hosts, using the antiserum described by Field and Appleton (1996). These antibodies label *Hematodinium* sp. parasite cells in infected Norway lobster tissues, but not host lobster tissues, or a co-infecting *Paranophrys*-like ciliate also present in some affected lobsters. *Perkinsus marinus* (Fig. 4) and the same seven parasitic dinoflagellates that were labeled by anti-*P. marinus* antibodies, were also reciprocally labeled by antibodies to the *Hematodini-
nium sp. parasite of *N. norvegicus* (Table 2). Immunostaining of *Hematodinium* sp. cells by their cognate antibodies included cell wall and cytoplasmic epitopes (Fig 6), strikingly similar to the result obtained in *Hematodinium* sp. cells immunostained with anti-*P. marinus* antibodies (Fig. 5). The dinoflagellate-like parasite infecting spot prawns *P. platyceros*, also failed to label with anti-*Hematodinium* sp. antibodies. Although the resolution of light microscopy for epitope localization and differentiation is low, the subcellular locations of binding epitopes for both antibody reagents appeared similar, and both antibodies gave similar reciprocal staining reactions when reacted with each others' cognate antigens (Fig. 3-6). These similar reciprocal staining results confirm that *P. marinus* and several parasitic dinoflagellates share common antibody binding epitopes.

DISCUSSION

Binding of anti-*P. marinus* antibodies to the majority of tested dinoflagellate parasites of crustacea and fish collected worldwide, indicates a widespread presence of shared epitopes consistent with phylogenetic affinities suggested by DNA nucleotide sequence homologies among members of these different parasitic taxa. Nearly identical reciprocal labeling of epitopes on *P. marinus* and the same seven parasitic dinoflagellates, by antibodies to the Norway lobster *Hematodinium* sp. parasite, confirms epitope sharing between these groups as the basis for serological cross-reactions. Several phototrophic dinoflagellates were also labeled by anti-*P. marinus* antibodies, indicating that *P. marinus*-like epitopes also occur among some free-living dinoflagellates, as well. Together, these results provide strong phenotypic evidence supporting a proposed phylogenetic link between these taxonomically diverse protists (Siddall et al. 1997).

Although the chemical identities of shared epitopes were not investigated during this study, it is possible that one or more represent conserved phenotypic elements common to all immunopositive samples, and broadly prevalent among the parasitic dinoflagellates. The relatively high apparent frequency of shared epitopes among parasitic dinoflagellates further suggests that *Perkinsus* species protozoan parasites may reflect a stronger phylogenetic affinity with an evolutionary lineage common to the parasitic dinoflagellates. Alternatively, expression and deviation of these shared epitopes may reflect phenotypic convergence associated merely with common parasitism of marine hosts. This interpretation seems unlikely, in light of the lack of reactivity documented for the anti-*P. marinus* antibodies used during this investigation with a broad range of protistan parasites of marine invertebrates and fish.

Despite assertions that described *P. marinus* ultrastructural characteristics may limit its taxonomic assignment to a diverse alveolate protozoan clade, and the suggestion that *P. marinus* is a dinoflagellate, per se (Siddall et al. 1997), unique dinokaryon nuclear morphology common in all parasitic and free-living dinoflagellates tested during this study, are absent in *P. marinus*. Unlike the dinoflagellates, and despite numerous observations of proliferating cell populations, condensed chromosomes are never reported in ultrastructural or histological studies of *Perkinsus* species nuclei (Sunila, Hamilton, and Dungan 2001), indicating that chromosome condensation during *Perkinsus* species cell division is either absent or highly transient. If demonstration of common antibody-binding epitopes supports the hypothesis that *P. marinus* evolved from a common basal lineage shared by dinoflagellates, and particularly by parasitic dinoflagellates, then its complete lack of dinokaryon nuclear structures clearly differentiates *P. marinus* from most dinoflagellates.

By its consistent failure to label with antibodies to either *P. marinus* or the Norway lobster *Hematodinium* sp. parasite, the dinoflagellate-like parasite of northeast Pacific pandalid shrimp *Pandalus borealis* and *P. platyceros* was clearly differentiated serologically from both *P. marinus* and the universally immu-

Table 2. Labeling of dinoflagellate, and dinoflagellate-like parasites of fish and crustaceans by anti-*Perkinsus marinus* (+, -) and anti-*Hematodinium* sp. (+, -) antibodies.

<table>
<thead>
<tr>
<th>Parasite (host)</th>
<th>Sample code</th>
<th>Antibody binding</th>
<th>Antibody binding site</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perkinsus marinus (Crassostrea virginica)</td>
<td>SMCC-18-14</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Hematodinium sp. (Nephrops norvegicus)</td>
<td>990427 Nnor-1</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Hematodinium sp. (Chioneocetes bairdi)</td>
<td>98-513-1</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Hematodinium sp. (Callinectes sapidus)</td>
<td>CS 2809</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Hematodinium australis (Portunus pelagicus)</td>
<td>205</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Hematodinium sp. (Necora puber)</td>
<td>475</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Hematodinium sp. (gammaridean amphipod)</td>
<td>OC819T019</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Amyloidozium ocellatum (Sciaenops ocellatus)</td>
<td>990409 Rdhum-2b</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>dinoflagellate-like sp. (Pandalus platyceros)</td>
<td>6668-3</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>90-5685 LMP</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

G. Stenfords, DEEB, University of Glasgow, Glasgow, Scotland, UK.
T. Meyers, ADF&G, Juneau, AK, USA.
T. Meyers, ADF&G, Juneau, AK, USA.
J. Shields, VIMS, Gloucester Point, VA, USA.
G. Wilhelm, IFREMER, Lorient, Brittany, France.
C. Harris, Texas A&M University, College Station, TX, USA.
S. Bower, DF0 Pacific Biological Station, Nanaimo, BC, Canada.
Fig. 3. *Perkinsus marinus* trophozoite labeled by anti-*P. marinus* antibodies in histological section from infected *Crassostrea virginica*. Fluorescent parasite cell phagocytized by host hemocyte, inside oyster mantle vein. Parasite nucleus (arrowhead) and cytoplasm are labeled. H, hemocyte nucleus; v, parasite vacuole. Bar = 5 μm.

Fig. 4. *Perkinsus marinus* trophozoite labeled by anti-*Hematodinium* sp. antibodies in histological section from infected *Crassostrea virginica*. Fluorescent parasite cell in oyster visceral connective tissue. Non-nucleolar parasite nucleoplasm (arrowhead) and cytoplasm are labeled. H, hemocyte nucleus; v, parasite vacuole; Bar = 5 μm.

Fig. 5. *Hematodinium* sp. labeled by anti-*Perkinsus marinus* antibodies in histological section from infected *Nephrops norvegicus*. Isolated parasite cell in lobster gill. Parasite nucleus (N) is not labeled, but cytoplasm and cell wall are. Bar = 5 μm.

Fig. 6. *Hematodinium* sp. labeled by anti-*Hematodinium* sp. antibodies in histological section from infected *Nephrops norvegicus*. Isolated parasite cell in lobster muscle. Parasite nucleus (N) is not labeled, but cytoplasm and cell wall are. Bar = 5 μm.
nopositive parasitic syndinean dinoflagellates infecting other crustacean hosts. These results challenge previous descriptions of this prawn parasite as dinoflagellate-like (Meyers, Lightner, and Redman 1994), and *Hematodinium*-like (Bower, McGladdery, and Price 1994), but provide no guidance on its true taxonomic affinities.

These findings confirm the presence of shared antibody-binding epitopes on cells of the apicomplexan oyster pathogen, *P. marinus*, and several dinoflagellates. The phenomenon was observed especially, but not exclusively, among the heterotrophic, parasitic Syndinidae. These results provide phenotypic evidence supporting recent molecular genetic nucleotide sequence data suggesting phylogenetic affinities between *Perkinsus* species mollusc pathogens and dinoflagellates. Identification of this phenomenon by antibodies previously determined to react only with members of the genus *Perkinsus*, cautions taxonomists to employ independent confirmatory or differential criteria, such as nuclear morphology, photosynthetic pigment contents, and cell ornamentation, when interpreting results of immunoassays using these or similar reagents for differentiation of organisms in these groups.

ACKNOWLEDGMENTS

This research was cooperatively funded, in part, by the South Carolina Sea Grant Consortium (P/M-2g) and the Maryland Sea Grant College Program (R/P-107-PD). We thank J. Cardinal and R. Hamilton for their fastidious execution and analysis of immunoassays. Parasitic and free-living dinoflagellate samples were kindly provided by P. Appleton, S. Bower, G. Doucette, C. Harris, G. Messick, T. Meyers, J. Shields, P. Tester, F. Van Dolah, and G. Wilhelm. G. Stentiford generously provided both tissues from *Hematodinium* sp.-infected Norwegian lobsters, and Field & Appleton (1996) rabbit antibodies to its *Hematodinium* sp. parasite. Harry Jordan, Jordan Photography, generously digitized and converted color photomicrograph prints of Fig. 1 and 2 to gray scale images. This is Contribution No. 1296 of the Belle W. Baruch Institute of Marine Biology and Coastal Research.

LITERATURE CITED

Received 10/26/00, 01/04/01, 09/21/01; accepted 09/25/01