Jon Derek Loftis

Assistant Research Scientist

Email: [[jdloftis]]
Phone: (804) 684-7876
Office: Davis Hall 222
Department: Center for Coastal Resources Management

Education

Ph.D., Marine Science. 2014. VIMS, College of William & Mary, Williamsburg, VA.

M.S., Environmental Science. 2009. Christopher Newport University, Newport News, VA.

B.S., Biology. 2007. Christopher Newport University, Newport News, VA.
Minors: Chemistry and Leadership Studies

 
Research Interests

I'm generally interested in hydrodynamic modeling applications related to coastal inundation caused by storm surge, heavy precipitation events, and persistant tidal flooding. My research also addresses new utilitarian methods of flooding extent verification via thermal infrared imaging drones and crowd-sourcing mobile applications such as the Sea Level Rise App (iOS / Android), and the geospatial analysis methods involved with statistically evaluating flood model predictions.

I currently lead the StormSense Project in the Greater Hampton Roads Region of Tidewater Virginia, an inundation forecasting research initiative to enhance emergency preparedness for flooding resulting from storm surge, rain, and tides. The scope of the project encompasses the interests of coastal local governments wishing to enhance their flood response efforts via a network of 'Internet of Things' (IoT)-enabled bridge-mounted ultrasonic water level sensors. The new suite of sensors installed by the Cities of Hampton Roads may one day be integrated with the VIMS TideWatch Network to enhance the reach of the existing tidal prediction network for improved geospatial flood predictions throughout the lower Chesapeake Bay when coupled with the 3D hydrodynamic flood modeling and forecasting capabilities of our Sub-Grid Model in Hampton Roads. The capabilities of street-level modeling are providing new insights into how we may adapt to compounding influences of changes in mean sea level, land subsidence, and storm surges-- now, and in the future.  

I also evaluate the impacts of point source and non-point source nutrient loading and pollution using water quality models to evaluate their implications for the health of coastal bays of the United States including the Chesapeake Bay and its many tributaries. I am also interested in the use of remote sensing satellites and GIS data to illustrate areas of historical significance in Virginia's past through the Remote Sensing GIS classes I teach at and William and Mary. 

More detailed information regarding my research experience is available in my CV.

My Recent Storm Surge and High Resolution Inundation Modeling Applications:

Norfolk and Virginia Beach, VA: Street-Level Modeling of Hurricane Matthew and Hurricane Hermine validated via Crowdsourced Geospatial Data and Drone2Map

Norfolk, VA: Street-Level Inundation Forecast Predictions in Fall 2015 Compared with 'Sea Level Rise' App Crowd-Sourced Data for Model Validation

New York City, NY: New York Harbor during 2012 Hurricane Sandy

Hampton, VA: NASA Langley Research Center during 2011 Hurricane Irene

Washington, D.C.: Potomac River during 2003 Hurricane Isabel and 1936 Potomac River Flood

Recent Publications

Loftis, J.D., Mitchell, M., Atkinson, L., Hamlington, B., Allen, T.R., Forrest, D., Updyke, T., Tahvildari, N., Bekaert, D. & Bushnell, M. (2018). Integrated Ocean, Earth and Atmospheric Observations in Hampton Roads, Virginia. Marine Technology Society Journal, 52(2): 68-83. URL

Boon, J.D., Mitchell, M., Loftis, J.D. & Malmquist, D.M. (2018). Anthropocene Sea Level Change: A History of Recent Trends Observed in the U.S. East, Gulf, and West Coast Regions. Special Report in Applied Marine Science and Ocean Engineering (SRAMSOE). No. 467. Virginia Institute of Marine Science, College of William and Mary. URL

Loftis, J.D., Katragadda, K., Rhee, S. & Nguyen, C. (2018). StormSense: A Blueprint for Coastal Flood Forecast Information & Automated Alert Messaging Systems. SCOPE '18 Proceedings of the 3rd International Workshop on Science of Smart City Operations and Platforms Engineering, 3(1). URL

Loftis, J.D., Forrest, D., Katragadda, K., Spencer, K., Organski, T., Nguyen, C. & Rhee, S. (2018). StormSense: A New Integrated Network of IoT Water Level Sensors in the Smart Cities of Hampton Roads, VA. Marine Technology Society Journal, 52(2): 56-67. URL

Loftis, J.D., Wang, H.V., Hamilton, S.E. & Forrest, D.R. (2018). Combination of Lidar Elevations, Bathymetric Data, and Urban Infrastructure in a Sub-Grid Model for Predicting Inundation in New York City during Hurricane Sandy.  Computers, Environment, and Urban Systems. (In Re-Review).  Preprint URL

Loftis, J.D., Wang, H., Forrest, D., Rhee, S. & Nguyen, C. (2017). Emerging Flood Model Validation Frameworks for Street-Level Inundation Modeling with StormSense.  SCOPE '17 Proceedings of the 2nd International Workshop on Science of Smart City Operations and Platforms Engineering, 2(1), 13-18. URL

Loftis, J.D., Wang, H.V., DeYoung, R.J. & Ball, W.B. (2016). Using Lidar Elevation Data to Develop a Topobathymetric Digital Elevation Model for Sub-Grid Inundation Modeling at Langley Research Center, In: Brock, J.C.; Gesch, D.B.; Parrish, C.E.; Rogers, J.N., and Wright, C.W. (eds.), Advances in Topobathymetric Mapping, Models, and Applications. Journal of Coastal Research, Special Issue 76, 134-148. Coconut Creek (Florida), ISSN 0749-0208.  URL

Wang, H., Loftis, J.D., Forrest, D., Smith, W., & Stamey, B. (2015). Modeling Storm Surge and inundation in Washington, D.C., during Hurricane Isabel and the 1936 Potomac River Great Flood. Journal of Marine Science and Engineering, 3(3), 607-629.  URL

Loftis, J.D. (2014). Development of a Large-Scale Storm Surge and High-Resolution Sub-Grid Inundation Model for Coastal Flooding Applications: A Case Study During Hurricane Sandy. Ph.D. Dissertation. College of William & MaryURL

Wang, H., Loftis, J.D., Liu, Z., Forrest, D. & Zhang, J. (2014). Storm Surge and Sub-Grid Inundation Modeling in New York City during Hurricane Sandy. Journal of Marine Science and Engineering, 2(1), 226-246URL

Loftis, J.D., Wang, H. & DeYoung, R. (2013). Storm Surge and Inundation Modeling in the Back River Watershed for NASA Langley Research Center. NASA Technical Report: NASA/TM-2013-218046.  URL


Curriculum Vitae

Download a copy of my CV

Follow me on Google Scholar!