Sediment accumulation patterns and fine-scale strata formation on the Waiapu River shelf, New Zealand

Tara A. Kniskern a,⁎, Steven A. Kuehl a, Courtney K. Harris a, Lionel Carter b

a Virginia Institute of Marine Science, College of William and Mary, P.O. Box 1346, Gloucester Point, VA 23062, USA
b Antarctic Research Centre, Victoria University of Wellington, P.O. Box 600, Wellington 6001, New Zealand

Abstract

Multiple sediment transport and reworking processes influence fine, cm-scale strata formation and long-term accumulation on the Waiapu River shelf, New Zealand. Gravity cores collected during two cruises, in August 2003 and May 2004, were analyzed using 7Be and 210Pb geochronologies, bulk carbon, δ13C, X-radiographs, and grain-size to investigate sediment mixing and accumulation patterns. The presence of 7Be on the inner- and mid-shelf regions (≤80 m) indicated recent (within the last 4–5 months) deposition of fluvial muds, whereas the distribution of excess 210Pb accumulation rates revealed that the middle to outer shelf (50–130 m) acted as fine sediment repositories on longer time scales. Excess 210Pb accumulation rates were high, with an area weighted average of 1.1 ± 0.1 cm/yr and ranging between 0.2 and 3.5 cm/yr, yet were localized such that only an estimated ~23% (ranging between 17 and 38%) of the fluvial load was retained on the shelf between 40 and 200 m depths over the last 80 to 100 yr. Sediments not retained on the shelf were either transported to deeper waters or along the shelf beyond the sampling area.

Several cores collected from the high sediment accumulation zone on the middle to outer shelf exhibited non-steady state excess 210Pb profiles, suggesting that multiple transport processes influenced fine-scale strata formation. Layers of low excess 210Pb activity and predominantly terrestrial δ13C and C/N values were likely formed during floods, when sediments were rapidly deposited and buried on the shelf. These event layers were sufficiently thick (up to ~20 cm), such that all or a portion of the initial flood layer immediately transited through the surface mixing layer, ensuring preservation in the sediment record. Sediments inter-bedded with these event layers reflected a relatively marine source indicating either that they were not deposited rapidly or were significantly bioturbated. A gradient of physical and biological mixing signatures, extending radially from the Waiapu River mouth, suggested that high background accumulation rates and flood deposits negatively impacted the preservation of biological structures and enhanced preservation of event-produced beds.

1. Introduction

Recent research has focused on narrow, steep continental shelves along collision margins because fluvial dispersal on these shelves accounts for over half of the world’s terrigenous input (Milliman et al., 1999; Farnsworth and Milliman, 2003). Small rivers on collision margins are characterized by mountainous catchments composed of highly erodible materials contributing to some of the earth’s highest sediment yields (Griffiths and Glasby, 1985; Milliman et al., 1999, Hicks et al., 2004). Sediment delivery tends to be episodic, with significant fraction of a small river’s annual load (Milliman and Syvitski, 1992; Farnsworth and Milliman, 2003; Hicks et al., 2004) often during energetic oceanic conditions (Wheatcroft and Sommerfield, 2005).

⁎ Corresponding author. Tel.: +1 804 684 7762; fax: +1 804 684 7250.
E-mail addresses: knista@vims.edu (T.A. Kniskern), kueh@vims.edu (S.A. Kuehl), ckharris@vims.edu (C.K. Harris), Lionel.Carter@vuw.ac.nz (L. Carter).

Multiple transport mechanisms disperse flood sediments, influencing fine-scale strata formation, and accumulation patterns on the shelf (Mulder and Syvitski, 1995; Morehead and Syvitski, 1999; Kineke et al., 2000, Friedrichs and Wright, 2004; Ma et al., 2008). Although fluvial sediments are typically dispersed in buoyant plumes, suspended sediment concentrations in these small rivers can exceed the threshold for negatively buoyant, gravity-driven, hyperviscous plumes (Mulder and Syvitski, 1995; Hicks et al., 2004). Additionally, when sediment flux convergence forms highly turbid benthic layers, sediments may be transported across the shelf bathymetry within gravity-driven flows (Ogston et al., 2000; Traykovski et al., 2000; Wright et al., 2001, 2002; Friedrichs and Wright, 2004; Harris et al., 2005; Ma et al., 2008). To create sufficient turbulence to maintain a gravity flow requires energetic waves or currents or a shelf slope >0.01 (Friedrichs and Wright, 2004, Wright and Friedrichs, 2006). Few studies, however, have observed gravity-driven flows on shelves (Ogston et al., 2000; Traykovski et al., 2000) or linked this transport
mechanism with specific depositional signatures (Wheatcroft and Drake, 2003; Mullenbach et al., 2004; Leithold et al., 2005; Sommerfield and Wheatcroft, 2007). In fact, descriptions of hyperpycnal and gravity flow deposits vary from muddy layers (Wheatcroft and Borgeld, 2000) to cross-bedded silts (Mullenbach et al., 2004) and even turbidite-like sequences with silty basal units (Sommerfield and Wheatcroft, 2007). It is likely that the variability of these depositional sequences is attributable to multiple combinations of transport processes contributing to event layer formation (Wheatcroft and Borgeld, 2000; Wright and Friedrichs, 2006; Ma et al., 2008).

The Waiapu River shelf (Fig. 1) is an ideal location to investigate transport mechanisms and their depositional products because the river has one of the highest sediment yields in the world, with concentrations predicted to exceed the threshold for hyperpycnal transport at least once per year (Mulder and Syvitski, 1995; Hicks et al., 2004). Additionally, observed energetic waves and currents during floods contribute to the formation of gravity-driven flows on the shelf (Ma et al., 2008). As part of a larger study of sediment transport and deposition on the Waiapu River shelf (Addington et al., 2007; Kniskern, 2007; Wadman and McNinch, 2008, Ma et al., 2008), this paper discusses modern shelf accumulation patterns on multiple time scales, biological and physical mixing patterns, preservation of terrestrial flood signals, and retention of fine-grained fluvial sediments on the continental shelf. Deciphering the effects of dispersal mechanisms on sediment burial history may enhance our understanding of the exchange and burial of important chemical constituents, and the interplay between biological and physical processes in forming fine, cm-scale strata.

2. Regional setting

The collision margin between the Pacific and Australian plates offshore of eastern New Zealand plays a significant role in sediment delivery and deposition on the shelf. The East Cape region is characterized by actively uplifting ranges and basins that comprise the backstop and forearc basin of the Hikurangi subduction zone (Walcott, 1987; Lewis and Pettinga, 1993). The East Cape rivers (Fig. 1), including the Waipaoa, Uawa, and Waiapu, drain this area, delivering an estimate 55 Mt (Hicks and Shankar, 2003) of easily eroded Triassic to Pleistocene materials (Field and Uruski, 1997) to the continental shelf.

The shelf adjacent to these rivers is only ~20 km wide, and bounded on the seaward side by the Hikurangi Trough (Lewis et al., 1998; Collot et al., 2001; Lewis et al., 2004). The Ruatoria Indentation (Fig. 1), a scar from seamounts subducted 2 to 0.2 Ma and subsequent debris flows between 40 and 170 ka, defines the shelf break (Lewis et al., 1998; Collot et al., 2001). Transpression from the obliquely converging tectonic plates contributed to the formation of a synclinal basin on the shelf adjacent to the Waiapu River (Lewis et al., 2004). Faulting within the basin and shelf subsidence rates approaching 4 m/ka created enough space to accommodate ~1 km-thick Quaternary deposits and ~100 m of Holocene fill (Lewis et al., 2004). Neogene and Quaternary faulting within the basin constrained the main loci of deposition near the shelf break (Lewis et al., 2004).

The Waiapu River (Fig. 1) has one of the highest sediment yields in the world, 17,800 t/km²/yr, due to high rainfall rates (averaging 2.4 m/yr), the highly erodible quality of the basin rocks, and frequent seismic

destabilization of the landscape (Hicks et al., 2000, 2004). The annual suspended sediment load is 35 ± 14 MT/yr, which is large for a drainage basin of only 1734 km² (Hicks et al., 2003). For comparison, the muddy sediment load of California Rivers, excluding the rivers that empty into San Francisco Bay, is 42 MT/yr with a cumulative catchment area of a little less than 100,000 km² (Farnsworth and Warrick, 2005). Like other small mountainous rivers, the Waiapu River basin area is too small to attenuate rain runoff (Milliman and Syvitski, 1992), resulting in high-load floods. The largest flood to affect the Waiapu River area in the last 100 yr was Cyclone Bola in 1988, which resulted in peak freshwater discharge of 4624 m³/s, an estimated peak suspended sediment concentration of 60 g/l, and a total event yield of 73–93 MT, over twice the average annual sediment load in only a few days (Hicks et al., 2004).

Seasonal climate and large-scale shelf currents may influence delivery, transport, and deposition on the Waiapu River shelf. For example, the annual flood season typically runs from June–September although major events can happen any time, e.g., Cyclone Bola occurred in March. In contrast, the highest wave energy is generally between April and July. Tripod measurements collected from May 2004 through October 2004 on the Waiapu River shelf indicated waves are energetic during, or shortly after floods, with r.m.s. (root mean squared) wave heights of 2.5 to 3.5 m and significant wave heights of 3.5 to 5 m (Ma et al., 2008), capable of resuspending muddy sediments at ~80 m water depth (Ma, pers. comm.). Recent work has indicated that gravity-driven flows on the Waiapu River shelf may be supported by strong along-shelf currents as well as energetic waves (Kniskern et al., 2006; Kniskern, 2007; Ma et al., 2008). Near-bed cross-shelf currents ~0.5 m/s correlated with strong along-isobath currents, suggesting the presence of current-supported gravity flows. Additionally, in some areas of the shelf, the slope exceeded the threshold for auto-suspending gravity flows (Friedrichs and Wright, 2004; Ma et al., 2008).

Offshore, the East Cape Current (ECC) flows south along the shelf break and upper continental slope (Chiswell, 2000) (Fig. 1). Cooler and fresher waters, inshore of the ECC, flow northward, and are a possible extension of the Wairarapa Coastal Current (Chiswell, 2000). These currents and the Wairarapa and Hikurangi eddies produced by the ECC may epiperiopenally affect outer shelf water circulation (Chiswell, 2000, 2003, 2005). A clockwise-circulating eddy observed offshore of East Cape indicated that currents were directed landward to the south of the Waiapu River mouth and offshore to the north of the river mouth (Chiswell, 2003, 2005). Tripod data from May through September 2004 indicated that there is an along-shore, northward flowing, depth-averaged current of ~6 cm/s (Ma et al., 2008).

3. Methods

Samples were collected during two cruises, the first aboard NIWA’s (National Institute of Water and Atmospheric Research Ltd.) RV Tangaroa in August of 2003, and the second aboard the University of Hawaii’s Kilo Moana in May 2004. A total of 35 Kasten cores, 28 multicores, and 63 box cores comprise the data set. Kasten cores, measuring a maximum 3 m in length, and multi-cores measuring a maximum 1 m length, were collected during August 2003, near the end of the annual flood season. Box cores, up to 0.5 m long, and 2 Kasten cores were collected in May 2004, during the seasonal period of high wave energy (Fig. 1).

X-radiographs, radioisotope activity profiles, organic carbon and nitrogen contents, and grain-size comprised the data collected from the cores. Kasten cores were first sub-sampled using plexiglass trays (30 cm long by 3 cm thick) in order to preserve sediment structure. These slabs of sediment were exposed to X-rays using a Medison portable X-ray unit at 20 mA and 60 kV for an average 16 s and then negatives were developed using Kodak Industrex Redipack™ film aboard the RV Tangaroa. The resulting X-ray negatives reflect differences in bulk density such that dark and light features represent relatively low-density and high-density sediments, respectively. Subsequent to X-ray processing, all cores were sub-sampled in 2-cm thick sections, with highest resolution at the top of the core, for grain-size, organic carbon and nitrogen, and radiochemical analyses.

X-radiographs, radioisotopes, and grain size were used to characterize sediment structure as well as indicate mixing and accumulation patterns on the shelf (e.g. Nittouer et al., 1984; Kuehl et al., 1996; Hirschberg et al., 1996; Dellanpenna et al., 1998). Differences in bulk density identified in the X-radiographs were a function of grain-size, water content, and sediment bedding due to physical and biological processes. The X-radiographs were used to interpret the relative impact of biological and physical mixing on the sediment record and to improve our interpretations of radioisotope, bulk carbon, and δ13C data. Radioisotope profiles were analysed to interpret sediment mixing processes and accumulation rates on multiple time scales. For example, Be, with a half-life of 2.23 yr, was used to quantify sediment accumulation on time scales of decades to 100 yr. Bomb produced137Cs (t1/2 = 30.1 yr) first appeared in sediments in 1954, and was used to identify sediment mixing and corroborate excess210Pb accumulation rates (Nittouer et al., 1984). Atmospheric deposition and in-situ decay of226Ra (for210Pb) are the main sources of these radioisotopes in coastal waters, whereas particle scavenging and settling deliver radioisotope activity to the seabed (e.g. Bruland et al., 1974; Dukat and Kuehl, 1995; Srisukswad et al., 1997).

Assuming secular equilibrium, excess210Pb activities were determined by measuring226Ra, its grand-daughter. Dried samples were spiked with a known amount of209Po and partially digested in 16 N HNO3 and 6 N HCl, resulting in the release of210Po from the fine fraction. Following the methods of Flynn (1968), the Polonium isotopes were plated onto silver disks suspended in the teatrace. An estimation of226Ra-supported activities was allowed when total210Pb
activities dropped to low, uniform levels at depth in the core. Where this supported activity could not be determined, an average value from the shelf was substituted. The supported level was subtracted from the total \(^{210}\text{Pb}\) activity to get an excess \(^{210}\text{Pb}\) value. Both \(^{137}\text{Cs}\) and \(^{7}\text{Be}\) activities were measured using a planar high purity germanium detector coupled with a multi-channel analyzer. Approximately 70–90 g of wet sediment was packed into a petri dish, and then gamma radiations were measured for 24–48 h.

The elemental and isotopic composition of organic matter was determined using an Isotope Ratio Mass Spectrometer (IRMS) at the University of California, Davis, Stable Isotope Facility. Samples from a single core, KC18, were dried, acidified with 10% HCl to remove inorganic carbon, and dried again before a sub-sample was transferred into methanol-rinsed tin capsules. Results included \(\delta^{13}\text{C}\), and total organic carbon and total nitrogen, which were used to determine the composition of bulk sedimentary organic matter (Leithold and Hope, 1999; Goni et al., 2006).

Waiapu River shelf surface (0–2 cm) sediments were analyzed in order to determine where muddy sediments were concentrated on the shelf. Sediments were wet sieved through a 63 µm sieve to separate the sand and mud fractions and then standard pipette methodology was used to determine the relative amounts of silt and clay. Higher-resolution analyses were performed on KC18 for comparison with \(^{210}\text{Pb}\) and total carbon data using a Sedigraph 5100 at the Skidaway Institute for Oceanography Sedimentology Lab.

4. Results

4.1. Sedimentary texture and structure

Surface (0–2 cm) grain-size data revealed that Waiapu River shelf sediments are composed of mostly silt and clay sized particles with some sandy sediments found at shallow water depths (30–40 m) and along the shelf break (140–200 m) (Table 1). Muddy sediments were dominant between 50–140 m water depths. A subset of the May 2004 data re-occupied August 2003 locations (Fig. 1, Table 1). The small differences in average surface sample grain size between the two cruises generally were not significant and were attributed to spatial heterogeneity rather than temporal variability (Table 1).

Kasten core penetration depths, with greater core length used as an indicator of muddy or poorly consolidated muddy sediments, suggested that muddy sediment distribution was patchy at water depths shallower than 80 m and that the muddy mid-to outer-shelf deposit was oriented obliquely along-shelf (Fig. 2; Tables 1 and 2). Several times the Kasten corer was deployed between 20 and 80 m water depths, but was unable to penetrate the sediment, suggesting that the seabed in these areas was not muddy or was consolidated sufficiently to prevent penetration. Cores collected at water depths shallower than 50 m tended to be shorter than 40 cm (Fig. 2). Increasingly coarser (silty) sediments found at the base of the short cores indicated that the muddy surface sediments were underlain by materials too coarse or consolidated to permit Kasten core penetration. Kasten core penetration was strongest on the middle to outer shelf between 60 and 150 m water depth, gradually decreasing to the north and south. Muddy deposit thicknesses in the shelf break region varied over relatively small spatial scales. For example, core thickness at 140 and 200 m depth (Kasten cores 14, 31, 32, 9, 33, 23) ranged between 11 and 263 cm (Fig. 2; Table 2). This spatial variability at the shelf break was attributed to irregular bathymetry and the presence of small basins along the Ruatoria Indentation (Lewis et al., 1998; Collot et al., 2001; Addington et al., 2007).

Sedimentary structures in the X-radiographs implied that the dominant mixing mechanisms varied along and across the shelf (Fig. 3). At water depths shallower than 80 m, lamina and inter-
bedded event beds ranging in thickness from a few mm up to 10 cm dominated physical sedimentary structures. Seaward of ~80 m water depth, the number of preserved laminations decreased radially from the Waiapu River mouth. Concomitantly, evidence of bioturbation increased radially with distance from the river mouth preserved between event beds. Sediments furthest from the Waiapu River mouth contained a few laminations interspersed with mottled and bioturbated sediments.

4.2. Radiochemical data

Generally, the longest cores also had the greatest thicknesses of excess 210Pb. The elongate pattern of maximum excess 210Pb depths showed that modern deposition was greatest on the mid- to outer-shelf just offshore of the Waiapu River mouth. Greater thicknesses were less on the inner shelf and shelf break region. It is important to note that both the pattern of maximum Kasten core penetration and maximum depth of excess 210Pb were oriented not along-isobath, but oblique to bathymetry. The modern depocenter overlay and aligned with the isobaths. The modern depocenter is defined as the mid-point between the low excess 210Pb activity sample and the nearest high activity sample. A maximum 10% overlap of activity error bars was allowed for those samples identified near or within a low activity layer. These low activity layers, defined by low excess 210Pb activities and constrained by X-radiographs, varied in thickness from a few centimeters up to 41 cm thick (Table 2). For those few instances where no visible boundary could be identified in the X-radiograph, then the boundary was defined as the midpoint between a low excess 210Pb activity sample and the nearest high activity sample provided the intervening distance was no larger than 10 cm. Laminations dominated the X-radiographs of the non-steady state profiles, whereas X-radiographs from cores with steady-state profiles were more bioturbated with fewer physically-produced laminations (Figs. 3 and 4).

Accumulation rates for the steady state cores were calculated using a least squares regression assuming that there was no biological mixing below a surface mixing layer (Nittrouer et al., 1984; Appleby and Oldfield, 1992). The rates for the steady state cores ranged from 0.2 cm/yr to 1.2 cm/yr, averaging 0.7±0.4 cm/yr (Fig. 4; Table 2). Three different methods were used to calculate accumulation rates on those 210Pb profiles that were characterized as non-steady state. First, we calculated accumulation rates by running a least squares linear regression through all the 210Pb data (Nittrouer et al., 1984; Appleby and Oldfield, 1992). The third approach removes the low 210Pb activities from the data and using a least squares linear regression of the log for excess 210Pb; a modified version of the Constant Initial Concentration (CIC) model used by Sommerfield and Nittrouer (1999) on non-steady 210Pb profiles on the Eel River shelf (Nittrouer et al., 1984; Appleby and Oldfield, 1992). The third approach removes the low activity values as well as the thickness of the event bed identified using the excess 210Pb profile and X-radiographs. On average, area weighted accumulation rates varied little: 1.3±0.1 cm/yr, 1.1±0.1 cm/yr, and 0.9±0.1 cm/yr, respectively (Table 2). Differences in accumulation rates for each core, however, varied greatly and will be discussed in Section 5.2. Accumulation rates were not calculated for cores on the shelf when the majority of the sediment profile was dominated by low excess 210Pb activity layers (e.g. KC 28, 30, 3, and 26) or the profile was short with uniformly low activities (e.g. KC 6, 7, 8, 17, 25, and 14; Table 2).

We were unable to use 137Cs to corroborate the accumulation rates calculated from the excess 210Pb profiles or to assess biological physical mixing rates because activities were often very low, or were

Table 2: Kasten core statistics

<table>
<thead>
<tr>
<th>Kasten core</th>
<th>Accum. rate (cm/yr), No. removal of low activities.</th>
<th>Accum. rate (cm/year), Normalized to event thickness</th>
<th>Event bed thickness (cm)</th>
<th>Accum. rate (cm/yr), Normalized to event thickness</th>
<th>Core length (cm)</th>
<th>Maximum depth of 210Pb, cm</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.8</td>
<td>8.8</td>
<td>0</td>
<td>0.8</td>
<td>193</td>
<td>85</td>
</tr>
<tr>
<td>2</td>
<td>4.3</td>
<td>3.0</td>
<td>62</td>
<td>1.4</td>
<td>237</td>
<td>135</td>
</tr>
<tr>
<td>3</td>
<td>N/A</td>
<td>N/A</td>
<td>81.5</td>
<td>N/A</td>
<td>257</td>
<td>250</td>
</tr>
<tr>
<td>4</td>
<td>0.9</td>
<td>0.9</td>
<td>14.5</td>
<td>0.8</td>
<td>191</td>
<td>80</td>
</tr>
<tr>
<td>5</td>
<td>2.1</td>
<td>1.1</td>
<td>15</td>
<td>1.0</td>
<td>188</td>
<td>130</td>
</tr>
<tr>
<td>6</td>
<td>N/A</td>
<td>N/A</td>
<td>0</td>
<td>N/A</td>
<td>23</td>
<td>20</td>
</tr>
<tr>
<td>7</td>
<td>N/A</td>
<td>N/A</td>
<td>0</td>
<td>N/A</td>
<td>28</td>
<td>25</td>
</tr>
<tr>
<td>8</td>
<td>N/A</td>
<td>N/A</td>
<td>0</td>
<td>N/A</td>
<td>29</td>
<td>25</td>
</tr>
<tr>
<td>9</td>
<td>1.2</td>
<td>1.2</td>
<td>0.2</td>
<td>1.2</td>
<td>263</td>
<td>130</td>
</tr>
<tr>
<td>10</td>
<td>2.0</td>
<td>1.8</td>
<td>3.2</td>
<td>1.4</td>
<td>224</td>
<td>165</td>
</tr>
<tr>
<td>11</td>
<td>N/A</td>
<td>3.5</td>
<td>3.4</td>
<td>3.4</td>
<td>238</td>
<td>180</td>
</tr>
<tr>
<td>12</td>
<td>2.0</td>
<td>1.7</td>
<td>4.3</td>
<td>0.9</td>
<td>214</td>
<td>105</td>
</tr>
<tr>
<td>13</td>
<td>1.8</td>
<td>1.6</td>
<td>1.5</td>
<td>1.4</td>
<td>237</td>
<td>130</td>
</tr>
<tr>
<td>14</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>20</td>
<td>N/A</td>
</tr>
<tr>
<td>15</td>
<td>1.2</td>
<td>1.2</td>
<td>0</td>
<td>1.2</td>
<td>102</td>
<td>90</td>
</tr>
<tr>
<td>16</td>
<td>2.6</td>
<td>2.5</td>
<td>75.7</td>
<td>1.7</td>
<td>171</td>
<td>165</td>
</tr>
<tr>
<td>17</td>
<td>N/A</td>
<td>N/A</td>
<td>0</td>
<td>N/A</td>
<td>8</td>
<td>0</td>
</tr>
<tr>
<td>18</td>
<td>2.1</td>
<td>2.4</td>
<td>47.5</td>
<td>1.9</td>
<td>238</td>
<td>150</td>
</tr>
<tr>
<td>19</td>
<td>3.9</td>
<td>1.4</td>
<td>10</td>
<td>1.0</td>
<td>256</td>
<td>150</td>
</tr>
<tr>
<td>20</td>
<td>1.2</td>
<td>1.1</td>
<td>19</td>
<td>0.9</td>
<td>182</td>
<td>105</td>
</tr>
<tr>
<td>22</td>
<td>2.1</td>
<td>2.1</td>
<td>17</td>
<td>1.9</td>
<td>246</td>
<td>170</td>
</tr>
<tr>
<td>23</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>23</td>
<td>25</td>
</tr>
<tr>
<td>24</td>
<td>N/A</td>
<td>N/A</td>
<td>0</td>
<td>0.0</td>
<td>25</td>
<td>15</td>
</tr>
<tr>
<td>25</td>
<td>N/A</td>
<td>N/A</td>
<td>0</td>
<td>N/A</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>26</td>
<td>0.9</td>
<td>1.0</td>
<td>5.5</td>
<td>0.9</td>
<td>116</td>
<td>95</td>
</tr>
<tr>
<td>27</td>
<td>N/A</td>
<td>N/A</td>
<td>0</td>
<td>N/A</td>
<td>33</td>
<td>190</td>
</tr>
<tr>
<td>29</td>
<td>0.9</td>
<td>0.8</td>
<td>3.5</td>
<td>0.8</td>
<td>69</td>
<td>75</td>
</tr>
<tr>
<td>30</td>
<td>N/A</td>
<td>N/A</td>
<td>0</td>
<td>N/A</td>
<td>174</td>
<td>110</td>
</tr>
<tr>
<td>31</td>
<td>0.5</td>
<td>0.5</td>
<td>0</td>
<td>0.5</td>
<td>149</td>
<td>65</td>
</tr>
<tr>
<td>32</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>11</td>
<td>25</td>
</tr>
<tr>
<td>33</td>
<td>1.1</td>
<td>1.0</td>
<td>18</td>
<td>0.8</td>
<td>214</td>
<td>125</td>
</tr>
<tr>
<td>34</td>
<td>0.6</td>
<td>0.6</td>
<td>0</td>
<td>0.6</td>
<td>N/A</td>
<td>75</td>
</tr>
<tr>
<td>36</td>
<td>1.4</td>
<td>1.7</td>
<td>21</td>
<td>1.3</td>
<td>229</td>
<td>109</td>
</tr>
<tr>
<td>37</td>
<td>4.7</td>
<td>2.0</td>
<td>27.5</td>
<td>1.4</td>
<td>239</td>
<td>114</td>
</tr>
</tbody>
</table>

Non-steady state cores in bold. Accumulation rates were calculated using the CIC model, the modified CIC approach outlined by Sommerfield and Nittrouer (1999) and the background accumulation equation outlined in this paper. Event layer thickness, in the fourth column, is the total thickness of event layers in each core. The last two columns show the Kasten core lengths and maximum depths of excess 210Pb.
below minimum detectable limits (~0.02 dpm/g). Surface sediments from the Waiapu River shelf revealed that the presence of 137Cs was patchy, with low activities. One steady-state core (KC 9) was chosen for an in-depth analysis of 137Cs to ascertain its potential to corroborate 210Pb accumulation rates. The 137Cs activities within the core were too low to identify either the first appearance of 137Cs or the 1963 peak, presumably reflecting low Southern Hemisphere bomb fallout (Tsumune et al., 2003) and/or dilution of the signal by the extremely high Waiapu River yield (Kuehl et al., 2004). Further examination of the cores for 137Cs was not attempted based on these results.

Measurements of 7Be activities in surface samples (0–2 cm) from the August and May cruises indicated deposition of river-derived materials within 4 to 5 months of sampling (Fig. 6). Highest activities (~2 dpm/g) were found at shallower water depths, less than 90 m. Most cores collected from deeper waters had no detectable 7Be activity. Measured activities ranged from 0.3–1.8 dpm/g with an average of 0.8±0.5 dpm/g. The May, 2004 cruise revealed a larger area...
Fig. 4. Excess 210Pb profiles for the Waiapu River shelf, transects A through F oriented with North at the top of the figure. (see Fig. 1). Apparent excess 210Pb accumulation rates were calculated by removing the low excess 210Pb values.
of \(^{7}\)Be deposition than the August cruise, due either to the larger sampling area in May, 2004, more recent sediment delivery, or varying patterns of sediment distribution.

4.3. Geochemical data

To better establish the provenance of the low \(^{210}\)Pb activity layers, bulk carbon and nitrogen, and \(\delta^{13}C\) were measured in core KC18 from the outer shelf (Fig. 7). Bulk organic carbon, atomic C/N, and \(\delta^{13}C\) at a indicated that the sediments on the shelf reflected mixed terrestrial and marine sources (Fig. 8). Organic carbon weight percent for KC18 varied between 0.35–0.73%, and generally fell within the 0.5–0.6% range observed by Leithold et al. (2006) for suspended sediment in the Waiapu River. The average \(\delta^{13}C\) and C/N values for the core were −24.8 ±0.4‰ and 10.7±0.9‰, respectively, indicating that the sediments were a mixture of mostly terrestrial and marine carbon (Leithold and Hope, 1999; Leithold et al., 2006). Down-core variations in C/N ranged from 9.6–13.8, and \(\delta^{13}C\) from −25.87 to −24.35, mirroring the pattern of variability observed in the excess \(^{210}\)Pb activity profile (Fig. 7).

5. Discussion

5.1. Formation of low excess \(^{210}\)Pb activity layers

We analyzed one core from the Waiapu River shelf to assess (1) the physical and chemical properties of the low excess \(^{210}\)Pb activity layers and (2) whether we could identify the transport mechanism(s) that produced the flood event layers. The low excess \(^{210}\)Pb activities found in KC18 were compared with grain-size, carbon content, and X-radiographs (Figs. 7, 9, and 10). The data suggested two pathways of emplacement: 1) rapid transport and deposition during floods resulting in low excess \(^{210}\)Pb activities and terrestrial carbon values (Sommerfield and Nittrouer, 1999; Addington et al., 2007) and 2) slower transport and deposition such that bioturbation rates exceeded burial rates resulting in higher excess \(^{210}\)Pb activities and mixed marine-terrestrial carbon values.

Grain-sizes for sediments from low activity layers were compared with grain-sizes from layers that did not exhibit low excess \(^{210}\)Pb activities (Fig. 9 A and B). Although there appeared to be a weak relationship \((r^2=0.54)\) between grain size and excess \(^{210}\)Pb activity, it was not sufficient to produce the observed low activity layers. A decay-corrected profile was calculated by applying the accumulation rate to the profile, thereby making it easy to identify the anomalous low activity layers. The decay-corrected profile, normalized by the clay fraction, showed that down-core variability in grain size could not account for the low activity layers (Fig. 9 B). Had the grain-size affected \(^{210}\)Pb adsorption, the normalized profile in Fig. 9 B would be straight relative to the uncorrected profile.

The low \(^{210}\)Pb activity data did not always correspond with laminations or bedding in the X-radiographs, and not all laminations exhibited low \(^{210}\)Pb activities (Fig. 9 A and B). Although there appeared to be a weak relationship \((r^2=0.54)\) between grain size and excess \(^{210}\)Pb activity, it was not sufficient to produce the observed low activity layers. A decay-corrected profile was calculated by applying the accumulation rate to the profile, thereby making it easy to identify the anomalous low activity layers. The decay-corrected profile, normalized by the clay fraction, showed that down-core variability in grain size could not account for the low activity layers (Fig. 9 B). Had the grain-size affected \(^{210}\)Pb adsorption, the normalized profile in Fig. 9 B would be straight relative to the uncorrected profile.

The low \(^{210}\)Pb activity data did not always correspond with laminations or bedding in the X-radiographs, and not all laminations exhibited low \(^{210}\)Pb activities (Fig. 10). Sediments at 21 cm and 84–89 cm were associated with darker, finer, laminations, whereas the other flood event layers were associated with lighter, coarser, laminations. There was a ~5 cm region of error in correlating X-radiographs with grain-size data, which were collected from the Kasten core rather than the X-radiograph sampling trays. This error was estimated by comparing a subset of X-radiographs with photographs of the Kasten cores prior to sampling. Additionally, the 2-cm core sampling interval was too coarse to accurately characterize changes in grain size within the event layers.

To assess whether we could match the event layers with a particular transport mechanism, we applied a grain-size criteria for event deposits used by Wheatcroft and Drake (2003) (Fig. 10). The results
suggested that multiple transport mechanisms were responsible for the low 210Pb activity layers. Some of the low activity layers were finer and some were coarser than the mean weight percent of the $<20 \mu m$.

Fig. 6. The presence of 7Be in surface sediment (0–2 cm) during the August 2003 and May 2004 cruises is represented by triangles and stars, respectively. The areas where 7Be was found during the August 2003 cruise are outlined with a solid line, whereas areas identified in the May 2004 cruise are outlined with a dashed line and shaded gray.

Fig. 7. Depth profiles of δ^{13}C and decay-corrected excess 210Pb for KC18, the location of which is on Fig. 1. Excess 210Pb has been decay corrected by applying the calculated accumulation rate to the activity profile.

Fig. 8. Atomic ratio of N/C versus δ^{13}C. Open and closed triangles represent event layers and non-event layers from KC 18, respectively. The boxes outline ranges for marine plankton, soil organic matter, and vascular plant debris identified by Leithold and Hope (1999). The dashed lines represent the ranges of N/C and δ^{13}C measured in the Waiapu River by Leithold et al. (2006).
fraction (Fig. 10). The finer layers may represent wave- or current-initiated gravity-driven flow during floods. The coarser sediments may represent gravity-driven flows or simply represent wave or current resuspension into the water column following a flood or reflect different compositions as a result of supply or winnowing. For example, the contribution of material from landslides increases with storm intensity (Hicks et al., 2004), potentially affecting grain size distributions and organic carbon composition (Leithold et al., 2006).

The range in observed atomic C/N and δ13C values for the identified flood events reflected various combinations of sediment delivery mechanisms and/or changes in basin sediment sources (Leithold and Blair, 2001; Leithold et al., 2006; Lloyd, 2007) (Figs. 7 and 8). Bulk atomic C/N ratios of suspended sediments in the Waiapu River ranged from 11.50 to 13.13, while δ13C values ranged between −25.81‰ to −25.16‰ (Leithold et al., 2006). The δ13C data from the event layers in KC18 fall within the range observed by Leithold et al. (2006) excluding the sample at 83–85 cm. Only samples taken at 20–22, 43–45, and 198–200 cm fall within the atomic C/N ranges, but the remaining event layers are still relatively riverine in value compared to those samples not associated with a low excess 210Pb flood event layer (Figs. 7 and 8). The event layers displaying more mixed terrestrial/marine carbon values (more positive δ13C) may reflect increased landsliding during those events or post-depositional reworking (Gomez et al., 2004; Lloyd, 2007). The event layers with relatively greater negative δ13C, more terrestrial, values may represent storms during which gullies contributed more to the fluvial load (Gomez et al., 2004; Lloyd, 2007).

The carbon, grain size, and 210Pb data suggest two pathways of emplacement: 1) rapid transport and deposition during floods resulting in low excess 210Pb activities and terrestrial carbon values (Sommerfield and Nittrouer, 1999; Addington et al., 2007) and 2) slower transport and deposition such that bioturbation rates exceed burial rates resulting in higher excess 210Pb activities and mixed marine-terrestrial carbon values. From other studies we know that waves and currents on the shelf were strong enough to support gravity-driven transport in the wave-current boundary layer both during and after floods (Kniskern, 2007; Ma et al., 2008). Although there was insufficient tripod data to evaluate whether auto-suspension is important on the Waiapu River shelf, some parts of the shelf do exceed the critical slope of 0.01 (Friedrichs and Wright, 2004).
5.2. Calculating \(^{210}\text{Pb}\) accumulation rates

The sum thicknesses of event layers, as indicated by the grain size, \(^{13}C\), C/N, and \(^{210}\text{Pb}\) profile analyses, represented a significant fraction of the modern (last 80–100 yr) sediment record. The effects of these low excess \(^{210}\text{Pb}\) layers on calculated accumulation rates were sufficient to require further investigation. The Waiapu River shelf accumulation rates calculated by removing the low excess \(^{210}\text{Pb}\) values varied 1–63% (mean 20%) from accumulation rates calculated without removing the low activity layer values, a factor of two greater than the maximum 10% difference observed on the Eel River shelf (Table 2) (Nitttrouer et al., 1984; Appleby and Oldfield, 1992; Sommerfield and Nitttrouer, 1999). Forty out of the 16 identified non-steady state profiles varied by more than 10% between the two approaches, and were significantly different. The lower event layer \(^{210}\text{Pb}\) values observed on the Waiapu River shelf could be caused by either shorter residence times in the water column prior to deposition, lower bioturbation rates post-deposition, a greater proportion of suspended sediments to available \(^{210}\text{Pb}\) in the water column relative to the Eel River shelf, greater preservation of event layers on the shelf, or a combination.

To assess the relative contributions of event and hemipelagic delivery to the seabed, we calculated a background, or hemipelagic, accumulation rate. The thickness of the event layer as well as the low excess \(^{210}\text{Pb}\) activities were removed from the profile before applying a least squares linear regression (Table 2). There was no significant difference in the average area weighted shelf accumulation rates produced by the background accumulation method, 0.9 ± ±0.1 cm/yr, and the method used by Sommerfield and Nitttrouer (1999), 11 ± 0.1 cm/yr (Table 2). The difference in the two approaches does, however, provide an idea of how much the sediment record was influenced by event-related deposition for each location. Background accumulation rates for the 16 identified non-steady state cores were an average 21 ± 14% lower than accumulation rates calculated by removing only the low excess \(^{210}\text{Pb}\) activities (e.g. Sommerfield and Nitttrouer, 1999). The accumulation rates for over half of the non-steady state cores were statistically different, suggesting that our interpretation of these event layers can significantly impact modeling of accumulation rates.

Further comparison of the two approaches revealed that event layer preservation increased with increasing background accumulation rate, suggesting that deposition from dilute suspension was important for preservation on the shelf as well as deposition by gravity flows. Fewer event layers were identified in regions of the shelf where background accumulation was less than 1 cm/yr (Figs. 3 and 4; Table 2). At water depths greater than 130 m, fewer observed event layers may indicate either that gravity-driven transport is not a dominant transport mechanism here and/or that lower accumulation rates result in increased transit time through the surface mixing layer and reworking by benthic organisms (Nitttrouer and Sternberg, 1981; Wheatcroft, 1990; Wheatcroft and Drake, 2003, Bentley et al., 2006). An alternate explanation is that suspended sediments were possibly removed from the outer shelf by the ECC, which, with a volume transport of 10–20 Sv (Chiswell and Roemmich, 1998), could significantly influence suspended transport and deposition on the outer shelf and slope.

5.3. Sediment trapping efficiency

The boundaries of the shelf for the purposes of estimating shelf trapping efficiency were determined using data from this study and Lewis et al. (2004). The offshore extent of the shelf was defined by the 200-m isobath on the east. The northern and southern boundaries were determined using a combination of observations from this study (Table 2; Figs. 4 and 5) and the observed shelf basin sediment thickness from Lewis et al. (2004). The southern boundary, near Waipiro Bay (Fig. 5), was well defined by low accumulation rates and bioturbation structures. The northern boundary was less well defined because accumulation rates were still high at the northern-most extent of the study area. In addition, numerical modeling results indicated that sediments were primarily exported from the shelf to the north of the Waiapu River mouth (Kniskern, 2007), making it difficult to define the extent of the shelf deposit. The northern boundary was therefore based on the basin dimensions defined by Lewis et al. (2004) and the location of sandy sediments just to the north of East Cape (Fig. 1).

The trapping efficiency of fine-sediment was calculated using the apparent upper limit estimates calculated by removing the low excess \(^{210}\text{Pb}\) values (Sommerfield and Nitttrouer, 1999) (Fig. 4; Table 2). Apparent \(^{210}\text{Pb}\) accumulation rates for each sub-region were averaged and applied over the whole. Porosity was held at 60% based on average values obtained from several cores at 50–100 cm depth, and are considered to be lower than what would be found at the surface of these cores. Annual fluvial delivery was assumed to be 35 ± 14 MT/yr (Hicks et al., 2004). Based on this approach, we estimated that about –23% of the sediments disgorged by the Waiapu River accumulated on the shelf between ~40–200 m water depths over the last 100 yr (Fig. 4).

Errors associated with this estimate of shelf retention included spatial interpolation of \(^{210}\text{Pb}\) accumulation rates, errors associated with the calculation of the \(^{210}\text{Pb}\) accumulation rates, assumption of a uniform porosity, identification of the shelf boundaries, the 40% uncertainty of the modern Waiapu River annual load (Hicks et al., 2003), and core compaction. The uncertainty of the fluvial load and porosity contributed to the largest errors. The fluvial load error resulted in a maximum trapping efficiency error of ~6% to ~16. Varying the uniform porosity from 60–90% resulted in an error of up to 17%. Assuming a maximum 28% of core shortening due to compaction (Mitra et al., 1999; Blomqvist, 1985) resulted in a 7% budget error.

Accumulation rate errors contributed minimally to variance in the estimate of shelf trapping efficiency, accounting for only 2% of the budget. We assessed accumulation rate errors using 1) the error of each \(^{210}\text{Pb}\) datum and 2) the standard error of the slope of regression. Maximum and minimum accumulation rates produced using these two methods revealed an average error of +12%. When the accumulation rates were applied to the shelf budget, spatial interpolation significantly reduced the impact of the accumulation rate errors. Additionally, accumulation rates were compared to rates calculated by dividing the maximum \(^{210}\text{Pb}\) penetration depth (Table 2) by 4–5 times the \(^{210}\text{Pb}\) half-life, thereby increasing spatial resolution. The resultant trapping efficiency ranged from 19–24%, adding little error to the original estimate of 23%.

Errors due to Kasten core sampling resolution and identifying the basin boundaries were difficult to quantify. Kasten core sampling resolution was most dense offshore of the Waiapu River mouth, transects C, D, and E, where the highest accumulation rates were identified. On average, the distance between sampling sites was ~3.5 km. Additional sampling would refine the 23% trapping efficiency estimate.

The depositional pattern and \(^{210}\text{Pb}\) profiles indicated that most muddy sediments were only ephemeral deposited between 40 and 50 m water depths. Muddy sediments likely bypassed this region of the shelf because energetic waves and currents (Wright et al., 2006; Ma et al., 2008) moved the sediments offshore (Kniskern, 2007; Ma et al., 2008). Seismic data and vibra cores collected from this region (up to 50 m water depth) revealed inter-bedded sands and muds to the south of the river mouth and massively emplaced sands and muds to the north of the river mouth (Wadman and McNinch, 2008).

Sediments not trapped on the shelf were likely transported to the north of the Waiapu River and across the shelf to the Ruitoria Indentation. Event layers identified in transect D cores from the shelf break (Figs. 1, 3, and 4) indicated that this area of the shelf was acting as a conduit for sediments to deeper waters. Sediments found in basins along the shelf break (Addington et al., 2007), and KC34 from this study suggest that Waiapu River sediments were transported beyond the shelf break. Numerical modeling results and triplo
observations indicated that most sediments exported from the system were likely transported to the north of the river mouth, in the direction of the average along-shelf current (Kniskern et al., 2006; Kniskern, 2007; Ma et al., 2008). The shelf deposit on the Waiapu River shelf is similar to the deposit on the Eel River shelf in several ways. Both retained an estimated ~20% of the muddy load on a relatively narrow shelf, only 15–20 km wide (Sommerfield and Nittrouer, 1999). Muds and sands are also trapped on the inner shelves of both systems (Crockett and Nittouer, 2004; Wadman and McNinch, 2008). An estimated 6–13% of Eel River muds are trapped on the inner shelf (Crockett and Nittrouer, 2004), whereas 16–34% of muds are trapped on the Waiapu River shelf between 0 to 50 m water depth (Wadman, 2008). One distinct dissimilarity, however, is that the Eel River shelf deposit is aligned along-bathymetry, whereas the depocenter on the Waiapu River shelf cuts across bathymetry (Fig. 5). The Waiapu River shelf deposit location appears to be influenced by an underlying synclinal basin (Lewis et al., 2004). In this regard the Waiapu River shelf is similar to the Waipaoa River shelf (Fig. 1) where deposition is also significantly influenced by regional tectonics (Miller and Kuehl, in review).

5.4. Event layer preservation

To preserve an event layer, it must transit through a surface mixing layer on the seabed (Guinsasso and Schink, 1975) quickly enough that the physical characteristics (grain size) of the event bed are not destroyed by subsequent bioturbation and/or physical reworking (Nittrouer and Sternberg, 1981; Wheatcroft, 1990; Wheatcroft and Drake, 2003). Once the event bed is advected through the surface mixing layer, it is considered preserved in the sediment record (Nittrouer and Sternberg, 1981; Nittrouer et al., 1984).

Generally, average continental shelf sediment accumulation rates (0.1 to 1.0 cm/yr) are too low to completely limit mixing by benthic organisms (Boudreau, 1994; Wheatcroft and Drake, 2003). The surface mixing layer is typically commensurate with a zone of active bioturbation, between 5 and 30 cm thick, with bioturbation rates ranging from ~10–100 cm2/yr (Wheatcroft and Drake, 2003, and references therein). Wheatcroft and Drake (2003) used the equation $T_{m} = \frac{\left| I_{f} - I_{b} \right|}{2S}$ to measure how quickly half of the event layer is transited through the surface mixing layer, where the transit time of half of the event layer is T_{m}, I_{f} is the mixing layer thickness, I_{b} is the event bed thickness, and S is the accumulation rate. A comparison of the estimated transit times and observed event layer dissipation times on the Eel River shelf indicated that most flood/event layers (~8 cm) are not preserved there (Wheatcroft and Drake, 2003; Bentley et al., 2006).

The preservation of event layers and the distribution of bioturbation signals in the sediment record varied along and across the Waiapu River shelf as indicated by X-radiographs (Fig. 3). Event bed and lamina dominated sediment structure in areas with the highest background accumulation rates, whereas bioturbation structures were more prevalent in areas where background accumulation was less than 1 cm/yr (Figs. 3 and 4). High accumulation rates (area weighted average of 1.1±0.1 cm/yr) compared to those observed on the Eel River shelf (0.4 cm/yr; Wheatcroft and Drake, 2003), in conjunction with frequent flooding, have contributed to the preservation of thick (~20 cm) event beds on the Waiapu Shelf (Figs. 3 and 4).

Although we were not able to assess macrobenthic abundances on the Waiapu River shelf, studies on shelves with high accumulation rates, and/or frequent floods have revealed a relative paucity of benthos and subsequently low estimated biodiffusivity rates on shelves offshore of the Eel, Amazon, and Chianjiang Rivers (Rhoads et al., 1985; Aller and Stupakoff, 1996; Bentley and Nittrouer, 2003; Wheatcroft, 2006). To conservatively gauge event bed preservation potential, we applied mixing layer thickness and dissipation measurements ($D_{b} = 10–100$ cm2/yr, average 29 cm2/yr) from the Eel River shelf (Wheatcroft and Drake, 2003; their Fig. 5), and used an area-normalized Waiapu River shelf accumulation rate of 1.1 cm/yr. Applying Wheatcroft and Drake's (2003) Fig 5 and a 1-D preservation potential model from Bentley et al. (2006) to the Waiapu River shelf suggested that some fraction of an event bed only a few centimeters (~4–6 cm) thick would be preserved with a 10–15 cm-thick surface mixing layer. For event beds thicker than the mixing layer thickness (when $L_{b} > L_{m}$) some fraction of the event bed is immediately preserved in the sediment record. The Wheatcroft and Drake (2003) equation can be modified such that $T_{m} = \frac{\left| I_{f} - I_{b} \right|}{2S}$, thereby giving the transit time of half the thickness of the event bed not immediately advected through the surface mixing layer.

5.5. Long- vs. short-term accumulation

Radioisotope activities on the Waiapu River shelf indicated that sediment depositional patterns varied over long- and short-term time-scales. The presence of excess 210Pb showed that sediments were deposited in waters deeper than 40 m water over the last 80 to 100 yr (Fig. 5). Accumulation rates and maximum penetration of 210Pb showed a mid- to outer-shelf depocenter, between 80 and 120 m water depth, just landward of the Holocene depocenter identified by Lewis et al. (2004). Sediments deposited only a few months prior to collection, however, revealed a very different spatial pattern (Fig. 6). Most samples containing detectable 137Ba were found between 80–30 m water depth, just landward of the longer-term 210Pb depocenter (Figs. 5 and 6).

These depositional patterns indicated an apparent disconnect between short- and long-term transport and reworking processes. Recent deposition was generally confined to water depths shallower than 80 m for both cruises, suggesting that sediments were first deposited on the inner and mid-shelf and subsequently transported to deeper waters, where 210Pb accumulation rates were highest. By the time sediments were redistributed to deeper waters, 137Ba activities may have been near the limit of detection. Other coastal systems have been observed to temporarily store sediments in shallower waters over time-scales of a week, followed by resuspension and transport to deeper waters (Sommerfield et al., 1999; Gerald and Kuehl, 2006). None have observed a depositional disconnect between 137Ba and 210Pb depositional patterns (Sommerfield and Nittrouer, 1999; Sommerfield et al., 1999). This apparent discrepancy in depositional patterns could be due to either sampling schedule relative to depositional event and subsequent redistribution and/or differences in dispersal and redistribution due to variable weather and oceanic conditions.

Recent research on the Waiapu River shelf suggested that the relative strength of along shore currents and wave energy influenced sediment transport, initial deposition, and subsequent redistribution (Kniskern, 2007; Ma et al., 2008). Freshly dispersed sediments were temporarily trapped on the inner and mid-shelf when along-shelf currents were strong enough to confine the fresh water and sediment plumes to the inner shelf (Kniskern, 2007; Kniskern et al., 2008). Satellite imagery confirmed this configuration, showing buoyant plumes confined to shallow waters (e.g., Hicks et al., 2004). Sediments were deposited and resuspended on the inner shelf until wave energy was sufficiently stronger than along-shelf currents, resulting in rapid offshore sediment transport in gravity-driven flows (Kniskern et al., 2008). If along-shelf currents were weak and waves were energetic during a flood event, terrigenous sediments would quickly move to deeper waters, in effect bypassing the inner shelf (Kniskern, 2007). Under the latter conditions, 137Ba activities would likely be detectable at water depths >80 m.

6. Conclusions

1) Accumulation rates on the Waiapu River shelf were high, with an area weighted average of 1.1 ± 0.1 cm/yr; ranging from 0.2–3.5 cm/yr.
An estimated ~23% of muddy sediments delivered to the shelf during the last 100 yr were trapped on the adjacent shelf between 40 and 200 m depth. The remainder of the sediment was either trapped on the inner shelf, or transported to the north or beyond the shelf break.

2) Long-term accumulation patterns significantly differed from short-term patterns during the observed periods. Muddy sediments tend to be ephemerally deposited between 30 and 50 m water depths. Longer-term accumulation rates peaked between 80 and 120 m water depths.

3) Physical processes dominated sedimentary structures on the shelf. Beds of up to 20 cm thick were most often found on the mid-shelf. Bioturbation increased radically on the outer shelf.

4) The non-steady-state nature of the 210Pb signal on the mid-to outer shelf versus the steady state cores found on the shelf break and slope suggest multiple sediment delivery mechanisms influenced strata formation including dilute suspensions, gravity-driven flows, and water column resuspension. Event layers exhibited a distinctly terrestrial signal compared to non-event sediments. The number of event layers decreased from the mid-to outer-shelf. Steady-state profiles are likely a product of bioturbation and decreased event sediment delivery.

5) Grain-size criteria indicated that event layers, identified by low excess 210Pb and carbon data, were potentially the product of multiple combinations of sediment transport pathways: river-initiated hyperpycnal plume, wave or current supported gravity flows, and wave or current resuspension.

Acknowledgements

The authors thank the National Institute of Water and Atmospheric Research (NIWA) together with the scientific and ships crew of RV Tangaroa, and the University of Hawai‘i’s RV Kilo Moana. Special thanks are extended to the people of the Ngati Porou Iwi, who graciously shared their land and culture. Comments by Murray Hicks, Chris Sommerfeld, and Rob Wheatcroft greatly improved this paper. Our research was funded by the National Science Foundation, project number OCE-0326831 and Foundation for Research Science and Technology contract CO10X203.

References

Bioturbation increased radically on the outer shelf.

