Biosensors Promise New Era in Marine Research

Each time you get a flu shot or other vaccination, you benefit from your immune system’s exquisite ability to create antibodies that can recognize and bind with foreign agents—whether they’re viruses, bacteria, or toxins.

VIMS researchers Erin Bromage, Steve Kaattari, and Mike Unger are now tapping the immune system’s power—and the latest advances in electronic instruments—to address pressing issues in marine science.

The trio combines specially designed antibodies with digital instruments to create so-called “biosensors” that hold promise for detecting and tracking oil spills, monitoring harmful algal blooms, identifying toxins, and other, perhaps yet unrecognized, applications all in real time.

Bromage, the project’s lead researcher, says that as far as he knows, “no one else is doing this. They might have biosensors in the lab, or a sensor that someone is operating in the field, but no one else has something that can be deployed autonomously over a period of time to look for a specific target.”

Kaattari, an immunologist, says, “We’re developing antibody-based sensors with the idea of placing them on different platforms to sense the introduction and dispersal of aquatic contaminants.” Those platforms include marine buoys, robotic submarines (see p. 8), and in the near future, a Buck-Rogers-like device small enough to clip on a researcher’s belt.

Unger is an environmental chemist who analyzes samples using today’s most high-tech instruments—mass spectrometers and gas chromatographs. He jokes that by working on the new sensors “I threaten to put myself out of business.”

Using today’s technology, says Unger, is both time-consuming and expensive. “For every hour I spend in the field collecting samples, I have to spend another 100 hours in the lab. There are multiple steps; it can literally take weeks to get one data point—at up to $1,000 per sample.”

With biosensors, Unger says “We’re looking at a new era, where there’s a possibility of achieving fast, cheap environmental data.”

Biosensors promise a new era by combining what Kaattari calls “an antibody’s almost infinite power to recognize the 3-D shape of any molecule” with detectors that can immediately translate the antibody’s recognition into an electronic signal. Bromage says the team’s current device can process a sample in less than three minutes.

To produce antibodies that can recognize the shape of a particular molecule—say one of the hundreds of types of hydrocarbons that might be found in an oil spill—the researchers essentially follow the recipe for making a vaccine using laboratory mice.

“Just like doctors vaccinate humans against the flu,” says Bromage, “we vaccinate mice against contaminants. We chemically bind contaminant molecules with proteins that the mouse’s immune system can recognize. The animal responds by producing antibodies, as if the contaminant were part of the vaccine.”

Once the researchers have “trained” the mouse’s immune system to produce antibodies that can recognize and bind to a specific contaminant, they ramp up production by fusing the mouse’s antibody-producing “B” cells with tumor cells that can grow indefinitely.

“When you immortalize that cell it produces only that very specific antibody, forever,” says Kaattari. “You grow it in culture, and it can produce a large amount of antibodies within a couple of weeks. It’s not like having to go to a new animal every time we might need new antibodies.” A cell line that was created in 1983 is still in use at VIMS today.

The researchers place the antibodies they’ve produced into newly developed devices that can measure the proportion of antibodies that bind to the targeted contaminant within a sample, thus measuring the contaminant’s concentration.

The researchers stress that the ability to quantify the concentration of a contaminant is a key benefit of new-generation sensors. “We used to just get an on-off signal,” says Unger. “The detector could only tell us whether or...

Continued on page 14

Bronk Lab Studies Nitrogen’s Role in Red Tides

VIMS Associate Professor Deborah Bronk has received a $500,000 grant from the National Oceanic and Atmospheric Administration (NOAA) to study the role that nitrogen plays in generating red tides along Florida’s Gulf Coast.

Red tides, known by scientists as harmful algal blooms or HABs, cause major economic and environmental harm around the U.S. and the world. In Florida, HABs are estimated to cost more than $20 million per year in tourism losses alone, and have been implicated in many fish-kill events. HABs also occur in Chesapeake Bay; most notably the widely publicized Pfiesteria bloom of 1997.

Bronk’s work with Karenia brevis in Florida should also help managers control other HAB organisms, both in the Gulf and elsewhere around the world, including Chesapeake Bay.