Including Fine-Grained Sediment Processes Within Numerical Representations of a Partially-Mixed Estuary, the York River, Virginia, USA

Dhanielle R.N. Tarpley, Courtney K. Harris, Carl T. Friedrichs, Kelsey A. Fall

York River
- Partially mixed estuary
- Seasonal secondary turbidity maximum (STM)
- ETM near West Point
- Multidisciplinary Benthic Exchange Dynamics (MUBED) focus site, since 2006.

2-D Estuary
Idealized Model Configuration

Results

ETM
- Animation 1:
 o Typical estuarine circulation
 o ETM at the salt front
 o Higher SSC during flood tide.
- Sediment trapping
 o Deposition occurred seaward of the ETM
 o Lower bed stress
 o Velocities converge.
- Erosion throughout the rest of the estuary

Conclusions
- An idealized 2-dimensional estuarine model can represent the processes that create an ETM.
- Suspension of fine-grained sediment in the salt front.
- Sediment trapping in the salt front.
- Higher suspended sediment during the flood tide.
- Sediment-induced stratification reduces suspended sediment concentrations.
- Observational data is useful to guide the processes necessary to incorporate into numerical models.

Future Work
Expand the capabilities of the model to better compare with observations.
- Three-dimensional model of York River estuary
 - Incorporates bed consolidation and swelling.
 - Observational data drives the salinity, winds and river discharge.
- Track sediment resuspension
 - Use Beryllium-7 as a tracer (Fig. 11)

References

HPC
- Aggregation and breakup of flocculated particles with a size class based population model
 - FLOOMD (Verney et al., 2013)

Acknowledgments

Thanks to Julia Morarity for assistance with data analysis.
Thank you to Adam Miller and the IT team maintaining the HPC (Scilone) and thank you to Eric Walter for the many hours spent assisting in switching to the new HPC.