Skill Assessment of Multiple Hypoxia Models in the Chesapeake Bay and Implications for Management Decisions

Isaac (Ike) Irby¹, Marjorie Friedrichs¹, Yang Feng¹, Raleigh Hood², Jeremy Testa², Carl Friedrichs¹
¹Virginia Institute of Marine Science, The College of William & Mary, USA
²Center of Environmental Science, University of Maryland, USA
Contact: irby@vims.edu

INTRODUCTION

Chesapeake Bay and its surrounding watershed play host to an extensive suite of commercial, agricultural, shipping, and tourism industries that have a value upwards of one trillion dollars and house to 16 million people. Ensuring the health of the Bay has become a priority for the six states that make up the watershed. Together they have committed to reducing nutrient input to the Bay to improve water quality. A multiple community model implementation approach can be used to gauge uncertainty and elevate confidence in regulatory model projections.

OBJECTIVE

Statistically compare a set of estuarine models of varying biological complexity in the Chesapeake Bay (Fig. 1).

METHODS

- Simulations from the regulatory model (R) and three community-based models (A, B, C) based on the Regional Ocean Modeling System (ROMS) were analyzed (Table 1): Biological Complexity

RESULTS

- All models consistently underestimate both the mean and standard deviation of stratification but perform well in terms of surface and bottom temperature, salinity, and DO (Fig. 4, Table 2).
- All models consistently perform better in the southern portion of the Bay (Fig. 4).
- The skill of all four models are similar to each other in terms of temperature, salinity, stratification, and DO (Fig. 5, Table 2).
- Model skill for Chl-a and nitrate is inconsistent between the models (Fig. 5).
- All models reproduce bottom DO better than the variables generally thought to have the greatest influence on DO: stratification, Chl-a, and nitrate (Table 2).

CONCLUSIONS

- Overall, models with lower biological complexity and lower resolution achieve similar skill scores as the regulatory model in terms of seasonal variability along the main stem of the Chesapeake Bay.
- All four models do substantially better at resolving bottom DO than they do at resolving its stratification, Chl-a, and nitrate due to DO's sensitivity to temperature as a result of the solubility effect.
- Modeled DO simulations may be very sensitive to any future increases in Bay temperature. In terms of nutrient reduction regulations, these findings offer a greater confidence in regulatory model predictions of DO seasonal variability since a model does not necessarily need to perform well in terms of stratification, chlorophyll, or nitrate in order to resolve the mean and seasonal variation of DO.

FUTURE WORK

- Examine the skill of these models in terms of interannual variability for a 25 year period.
- Generate a multiple model ensemble from model B.
- In cooperation with the US Environmental Protection Agency, evaluate regulatory nutrient reduction scenarios in parallel with the model R.
- Utilize the suite of projected water quality simulations to define the uncertainty in regulatory estimates of estuarine response to reduced nutrient loads.

TABLE 1. Characteristics of the individual models.

<table>
<thead>
<tr>
<th>Nutrients</th>
<th>R</th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>N, P, Si</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>BGC Sed</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Algal Groups</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

TABLE 2. Total normalized RMSD computed for multiple variables of each model using observations from cruises in 2004 (top value) and 2005 (bottom) value at 10 main stem stations shown in Figure 2. White font indicates model results that perform worse than the mean of the observations.

ACKNOWLEDGEMENTS

This work was funded by the NOAA NOS IOOS as part of the Coastal Modeling Testbed (NA13NOS0120139) and the NASA Interdisciplinary Science Program as part of the USEtCt project (NN01AD47G7). Thanks to Aaron Bower and Ping Wang.